

VALDOR ENGINEERING INC.

Municipal • Land Development • Water Resources
Site Development • Project Management • Contract Administration
Consulting Engineers - est. 1992

741 Rownfree Dairy Road, Suite 2 Woodbridge, Ontario L4L 5T9 TEL (905) 264-0054 FAX (905) 264-0059 Info@valdor-engineering.com www.valdor-engineering.com

FUNCTIONAL SERVICING REPORT

Corseed Subdivision

West Side of County Road 25, South of Melody Lane Town of Grand Valley County of Dufferin 22T-201601

March 2016 Rev: March 2018 Rev: October 2018

Prepared For: Corseed Inc.

File: 14118

S:\Projects\2014\14118\Reports\Fsr\5-October 2018_Fsr Third Submission\14118 Fsr - October 2018.Docx

TABLE OF CONTENTS

1.0	INTRODUCTION	4
1.1	Existing Conditions	4
1.	.1 Geotechnical	4
1.	.2 Topography	4
1.2	Proposed Development	5
1.3	Purpose of Report	5
1.4	Approving Authorities	6
2.0	WATER SERVICING	6
2.1	Domestic Demand	
2.2	External Watermains	
2.3	Local Watermains & Service Connections	
2.4	Fire Protection	
3.0	WASTEWATER SERVICING	
	Wastewater Loading	
3.1 3.2	External Sanitary Sewers	
3.2	Local Sanitary Sewers & Service Connections	
3.3	Local Samilary Sewers & Service Connections	
4.0	STORM CONVEYANCE SYSTEM	
4.1	Minor System Design	
4.2	Major System Design	
4.3	Foundation Drainage	
4.4	Roof Drainage	
4.5	Flood Plain	12
5.0	STORMWATER MANAGEMENT	13
5.1	Storm Drainage Areas	13
5	1.1 Pre-Development	
	1.2 Post-Development	
5.2	Stormwater Management Design Criteria	13
5.3	Stormwater Management Pond Design	14
5	3.1 Quality Control	14
5	3.2 Erosion Control	
	3.3 Quantity Control	18
5	3.4 Thermal Mitigation Measures	19
	3.5 SWM Pond Inspection & Maintenance	19
5.4	Site Water Balance	22
5	4.1 Methodology	22
5	4.2 Existing Conditions Water Balance Volumes	23
5	4.3 Post-Development Unmitigated Water Balance Volumes	23
5	4.4 Site Infiltration Mitigation Measures	23

TABLE OF CONTENTS (Continued)

6.0 V	EHICULAR	& PEDESTRIAN ACCESS	24
6.1	•	Roads	
6.2	•	s & Parking	
6.3	Sidewalks	s, Walkways & Trails	25
7.0 G	RADING		25
7.1		Criteria	
7.2		ry Design	
7.3	Permitting]	26
8.0	EROSION	& SEDIMENT CONTROL DURING CONSTRUCTION	27
8.1		easures	
8.2		ion Sequencing	
8.3	ESC Insp	ection & Maintenance	28
9.0	UTILITIES		29
10.0	SUMMARY	′	30
11.0	REFEREN	CES & BIBLIOGRAPHY	33
LIST	OF TABLE	S	
	Table 1	Development Statistics	5
	Table 2	Domestic Water and Fire Flow Demand	
	Table 3	Wastewater Loading Summary	
	Table 4	Summary of Storm Drainage Peak Flows	
	Table 5	Stormwater Facility Performance Summary	
LIST	OF FIGURE	ES .	
	Figure 1	Location Plan	Follows Text
	Figure 2	Proposed Draft Plan of Subdivision	Follows Text
	Figure 3	Existing Storm Drainage Plan	Follows Text
	Figure 4	Proposed Storm Drainage Plan	Follows Text
	Figure 5	Floodplain Mapping Drainage Plan	Follows Text
	Figure 6	HEC-RAS Cross Section Location Plan	Follows Text
	Figure 7	Floodplain Mapping	Follows Text

TABLE OF CONTENTS (Continued)

LIST OF APPENDICES

Appendix A	Water Demand Calculations & Details
Appendix B	Wastewater Servicing Details & Calculations
Appendix C	Storm Drainage Details & Calculations
Appendix D	Stormwater Management Pond Design
Appendix E	Site Water Balance Calculations
Appendix F	Standard Road Cross Sections
Appendix G	Geotechnical Bore Hole & Test Pit Logs
Appendix H	Erosion & Sediment Control Details

LIST OF DRAWINGS

Dwg. FSP-1	Functional Servicing Plan	Rear Pocket
Dwg. PGR-1	Preliminary Grading Plan	Rear Pocket
Dwg. SWM-1	SWM Pond - Plan View	Rear Pocket
Dwg. SWM-2	SWM Pond - Sections	Rear Pocket

1.0 INTRODUCTION

Valdor Engineering Inc. has been retained by Corseed Inc. to provide consulting engineering services for the proposed Corseed Subdivision located on a 14.91 hectare parcel on the west side of County Road 25, south of Melody Lane, in the Town of Grand Valley, County of Dufferin as illustrated in **Figure 1**.

The proponent of the subject development also owns the lands to the southeast which are referred to as the Moco Subdivision (22T-201502) and a separate draft plan application and functional servicing report was submitted. The Moco Subdivision has been granted Draft Plan Approval and detailed engineering design has commenced.

1.1 Existing Conditions

The subject site is bounded to the north by an abandoned railway corridor, to the east County Road 25 and to the south and west by existing agricultural lands. Boyne Creek passes to the southwest of the subject site as it flows to the Grand River in a southeasterly direction. The majority of the subject site is presently a vacant field with two small stands of trees. The geotechnical and topographical conditions of the site are summarized as follows:

1.1.1 Geotechnical

A Geotechnical Investigation Report for the subject site was prepared by V.A. Wood Inc. and consisted of nine (9) total boreholes at 5.0m in depth. The investigation determined that the site is mostly covered by a surficial deposit of topsoil ranging between 100mm and 250mm, underlain by a deposit of brown clay and silt ranging between 0.8m to 4.6m below grade. Only 2 boreholes (BH 6 and BH 8) yielded a sandy silt fill at the surface (BH 6) and beneath the topsoil (BH 8) at 0.8m and 0.9m below grade.

With regards to groundwater, the report indicates that only one of the boreholes encountered cave-in at 0.8m below grade with free water surfaces noted for 6 of the boreholes at 0.9m to 4.1m below grade. An examination of the soil samples revealed a moist to wet observation. The report indicates that provisions should be made for the control of any surface water run-off and minor groundwater seepage by pumping from local sumps, where required. The Report recommends that a side slope of 1:1 be cut back or supported using adequately braced sheeting for excavations exceeding 1.2m below grade. The borehole and test pit logs are included in **Appendix "G"**.

1.1.2 Topography

The surface condition of the subject site can be generally described having gently sloped topography. Based on the topographic survey of the site, the east part of the property slopes from County Road 25 down in a westerly direction towards Boyne Creek. Boyne Creek passes by the southwest corner of the subject site while flowing to the southeast. Based on an existing elevation of 471.90 m near County Road 25 and an existing elevation of 466.50 m at the edge of the

environmental protection buffer, the differential of 5.40 m equates to an overall average slope of approximately 1.3% for the development area which is considered to be relatively moderate. The valley area of the site within the environmental protection block slopes downwards towards Boyne Creek at a shallower slope typically ranging between approximately 0.35% and 0.50%.

1.2 Proposed Development

The proposed development consists of a mix of lots for detached dwellings as well as blocks for street townhouses, mixed use development and commercial space. The lot frontages for the detached dwellings will typically range from 42 to 50 feet. The subdivision will include a road connection to County Road 25 and consist of an internal network of looping streets.

A block of land in the north west part of the development has been established for a stormwater management facility to treatment for stormwater runoff. The remainder of the lands consist of blocks along County Road 25 for a sidewalk, an environmental protection area containing the valley lands associated with the adjacent Boyne Creek and a buffer block designated as open space. A reduced copy of the proposed Draft Plan of Subdivision is contained in **Figure 2**. The development statistics and the equivalent population data are summarized in **Table 1**.

Table 1. Development Statistics

Criteria:

Single Residential Dwelling Population
Density:

4.0 Persons / unit

Mixed Use Population Density*

*value retrieved from similar developments within nearby municipalities

To Persons / ha

Land Use	Area	Residential Units	Equivalent Population
	(Ha)	(No.)	(persons)
Residential Units	5.14	115	460
Mixed Use	0.45	10	35
Commercial	0.85		24
SWM Pond	0.91		
Street ROW	2,45		
Open Space	0.32		
Environmental Protection Lands	4.79		
TOTAL	14.91	125	519

1.3 Purpose of Report

This report has been prepared in support of the application for draft plan approval for the subject property. The primary intent of the report is to demonstrate the viability of water

and wastewater servicing, storm drainage and stormwater management, grading as well as vehicular and pedestrian access for the proposed development with respect to applicable guidelines, policies and design criteria.

This report has been prepared based on a review of the topographic survey and background studies and a visit to the site. The conceptual design is documented on a series of large size functional servicing plans which are contained in a pocket at the rear of this report. This document provides guidance for detailed engineering design of the subdivision.

1.4 Approving Authorities

This report will be circulated for review, comment and approval to:

- 1. The Town of Grand Valley;
- 2. The County of Dufferin; and
- 3. The Grand River Conservation Authority (GRCA).

2.0 WATER SERVICING

The Town of Grand Valley retained R.J. Burnside & Associates Limited (RJB) to complete an update to the Water and Wastewater Master Servicing Plan. This Technical Memo completed in May 2014 reflects recent historical water demands and wastewater flows, incorporate amendments undertaken to the Town's Official Plan, and adds to a previous Memo completed by RJB in 2010 with regards to the water and wastewater infrastructure's ability to meet future demands.

The report outlines the existing water supply system consisting of 3 wells; Cooper Street Pumphouse wells (PW1 and PW2) and the Melody Lane Pumphouse well (PW3). PW1 and PW2 do not operate at the same time, limiting operating capacity. An elevated water tower with a storage capacity of 1,600m³ and high water level of 519.3m located off County Road 25, north of Fife Road functions as part of the distribution system water storage and supplements the well supply during high demand periods. Based on the Memo's analysis of existing and future condition water service demands it was determined that the existing infrastructure would not be able to meet the future demand and that additional water supply, treatment and storage be implemented to meet the impending requirement. Of particular note is the Memo's recommendation to construct a new water tower, with similar capacity and storage to the existing tower, at the south end of the Town to accommodate the demand imposed on the system from the forthcoming southern developments where the subject site is located. This recommendation also adds that a Schedule B Class Environmental Assessment (EA) be undertaken to investigate the additional water capacity and storage requirements when the serviced population increases from 1,482 persons to 2,300 persons, or 3 to 5 years in advance of the need for the water supply, according to the Memo.

Further details with regards to the existing and future water supply and distribution can be found within the mentioned Technical Memo. The following is a summary of the water servicing requirements for the subject site.

October 2018 File: **14118**

2.1 Domestic Demand

The domestic water demand is to be calculated using the Town and Ministry of the Environment design standards which includes the following parameters:

Residential Average Day Demand: 450 L/person/day

Maximum Day Factor: 2.75 Peak Hour Factor 4.13

162

A detailed tabulation of the domestic water demand calculation is detailed in **Table A1** of **Appendix "A"**. The demands are summarized in **Table 2** below.

Maximum Maximum Land Use Equivalent Domestic Peak Fire Maximum Population Demand Dav Hour Flow Day Plus **Day Plus** Demand Fire Flow Fire Flow Demand (L/min) (L/min) (L/min) (L/s) (Persons) (L/min) (L/min) Residential 460 144 395 594 6,000 Mixed Use 35 30 45 11 24 Commercial 8 21 31

446

Table 2. Domestic Water & Fire Flow Demand

2.2 External Watermains

519

TOTAL

In accordance with the recommendations of the Technical Memo, a trunk watermain is proposed to be extended from its current terminus southerly from the existing WPCP along County Road 25 and across the frontage of the subject site. The proposed schematic extends the watermain to the sole entrance of the subject site which will facilitate the loop as required by the Town standards. This watermain is anticipated to connect to the proposed water storage tank which will be constructed at the south end of town, with an exact location of the facility to be determined after a Class EA stated in the Memo has been initiated. This system will feed a local distribution network which will provide water supply to the subject lands. The configuration of the water distribution system is illustrated on **Dwg. FSP-1**.

670

6,000

6,466

108

2.3 Local Watermains & Service Connections

The local water distribution system within the subdivision will consist of watermains ranging in diameter from 150mm to 200mm. This water system will connect to the trunk watermain aforementioned in the preceding section.

In accordance with Town standards the individual detached dwellings are each to have separate water connections. Based on Ontario Building Code (OBC 2012) regulations (7.6.3.4.(1) and (5) and Table 7.6.3.4), the single residential unit dwellings will be serviced with 25mm diameter water connections. The size of service to be provided for the mixed use units is to be determined during detailed design, as the details of the building to be constructed has not been yet established. Water meters shall be equipped as specified within Town standards.

2.4 Fire Protection

The fire flow required for the proposed detached dwelling units and commercial buildings was calculated using the criteria indicated in the *Water Supply for Public Fire Protection Manual*, 1999, by the Fire Underwriters Survey (FUS). The calculation incorporates various parameters such as coefficient for fire-resistant construction, an area reduction accounting for a fire-resistant (one hour rating) protection, a reduction for low-hazard occupancies, and a factor for neighbouring building proximity.

The calculation was completed to reflect the governing conditions which are the largest detached dwelling and the largest interior multi-use unit. Based on the calculations, the minimum fire suppression flow required for the residential units is 6,000 L/min. The calculation for minimum fire suppression flow for the mixed use unit and commercial building is to be determined during detailed design, as the details of the building to be constructed has not been yet established. The detailed fire flow calculations are provided in **Table A-2** of **Appendix "A"**. In accordance with the Town standards, this flow must be available at a minimum pressure of 140 KPa.

Fire hydrants will be provided along the private road such that a fire hydrant will be available approximately within 100m of one another and not be spaced exceeding 120m, as set out in the Town standards.

3.0 WASTEWATER SERVICING

The Town is currently serviced by the existing Grand Valley Wastewater Pollution Control Plant (WPCP) located at the east end of Industrial Road and just east of the subject site. This WPCP was commissioned in July 2011 with an average daily flow rating of 1,244m³, designed for a population of 2,950 persons.

In addition to the Technical Memo composed by RJB as described in the previous section, a letter was completed to the Town by RJB in May 2015 updating the latter report's assessment of available capacity at the WPCP. The update also provided details on the population demands, wastewater flows and the capability of the WPCP to accommodate future planned developments. Both the 2014 Memo and 2015 Letter determined that the existing plant will need to be upgraded to manage future flow and capacity requirements. An Assimilative Capacity Study for the WPCP was completed in 2013 by XCG Environmental Engineers and Scientists (XCG) in conjunction with RJB, and concluded that a Class EA Study be undertaken to further examine the need to increase capacity for the future scenario at the WPCP facility. The XCG report findings were included as part of the RJB Technical Memo conclusions.

The subject site was part of the study area considered and was partitioned into a separate sanitary drainage area (Area E3) within the Technical Memo. This area was recommended to convey wastewater flow to the existing system via connection to Leeson Street or Emma Street South that would then relay the flow to the WPCP. The Memo provides an assessment and analysis of the wastewater flows by formulating an estimate of the expected population to settle on these lands. Upon a more detailed review of the 2014 Memo, 2015 Letter and given the proposed plans presented within this Report, it appears that there is a minor variance between the estimations made within the Technical Memo and the proposed plans set forth as part of this Report. Ultimately, utilizing the Town population density values within the 2015 Letter, the Memo's

population value for Area E3 were at a lower value than that currently anticipated, yielding variance in the projected wastewater flow rates to the existing system and to the WPCP. An alternative strategy would need to be conceptualized in order to address the differences between the proposed development and the baseline information available.

A wastewater management strategy has been optimized for the Corseed Subdivision that considers the variances, as well as the recommendations provided within the Technical Memo. This strategy includes conveying flow southerly along County Road 25 to the Moco Subdivision, located southeast of the Corseed site, and eventually to a Sanitary Pumping Station (SPS-A) located at the northeast corner of the Moco site within Town lands that pumps the wastewater to the WPCP. The wastewater flow generated from the Corseed Subdivision has been considered in the generation of SPS-A on the Moco Lands, with details on SPS-A found within the Functional Servicing Report for the Moco Subdivision submitted to the Town under a separate cover. It is anticipated that SPS-A will adequately service both the Corseed and Moco Subdivisions within the flow limit allocated in the Technical Memo. The following are further details of the wastewater servicing analysis for the subject site.

3.1 Wastewater Loading

The wastewater loading is to be calculated using the Township engineering design standards which include the following parameters:

Residential Average Daily Flow:

450 L/person/day

Residential Peaking Factor:

$$K_{H}=1+\frac{14}{4+\sqrt{P}}$$

Where: $K_H = Harmon Peaking Factor$

(Max. 4.0, Min. 2.0)

p = Population in thousands

Extraneous Flow, I:

0.20 L/ha/s (Infiltration)

Design Flow, Q =

Q_{RES} x K_H + I

Based on the above criteria the sewage flow calculations are provided in **Table B1** contained in **Appendix "B"** and the total flow is summarized in **Table 3**.

Table 3. Wastewater Loading Summary

Land Use	Area	Equivalent Population	Average Daily Flow	Harmon Peaking Factor	Peak Daily Flow	Infiltration Rate	Total Flow
	(Ha)	(Persons)	(L/s)		(L/s)	(L/s)	(L/s)
Residential	5.14	460	2.40	3.99	9.57	1.03	10.59
Mixed Use	0.46	35	0.18	4.00	0.72	0.09	0.81
Commercial	0.87	24	0.09	4.00	0.38	0.17	0.55
Parks & Open Space	0.32					0.06	0.06
R.O.W	2.42					0.48	0.48
TOTAL	9.20	519	2.67		10.66	1.84	12.50

3.2 External Sanitary Sewers

In accordance with the proposed initiatives stated within Section 3.0, it is being proposed to convey the Corseed sanitary flow to SPS-A, within Town owned lands, northeast of the Moco Subdivision that also contains the WPCP. Given the existing topography of the area, an analysis has been conducted to select a route which minimizes the depth of the gravity sewer for the Corseed Lands conveyed to SPS-A. This consideration of conveying the E3 land southerly instead of northerly as set within the RJB Memo to SPS-A reduces the wastewater load of E3 to the existing system. It has been calculated in **Table 3** that approximately 12.5 L/s will be conveyed from E3 to SPS-A. Combined with the Moco Subdivision wastewater flow to SPS-A, the total sanitary outflow of SPS-A to WPCP is 35.7 L/s.

In order to facilitate the wastewater conveyance of the Corseed Subdivision to SPS-A, a new sanitary sewer will be required to be constructed within the existing road allowance along County Road 25, but not within the travelled portion of the roadway. This proposed sewer is anticipated to be 120 m in length with 2 manholes to be installed on County Road 25, eventually connecting to the system at the Moco Subdivision.

The preliminary layout of the sanitary sewers has been included on **Dwg. FSP-1** which includes sanitary obvert elevations to illustrate the depth of the sewer along the alignment.

3.3 Local Sanitary Sewers & Service Connections

The subject site will be serviced by a local sanitary system consisting of sewers which will discharge to County Road 25 and eventually to SPS-A located on Town lands north of the Moco Subdivision SWM Block. The local sanitary drainage system will be by gravity and follow road grade slopes where possible. In accordance with standard practice and Town standards, manholes will be provided for maintenance access at a maximum spacing of 100m and individual sanitary service connections will be provided.

4.0 STORM CONVEYANCE SYSTEM

The subject site is located in the Boyne Creek watershed which is part of the larger Grand River watershed under the jurisdiction of the Grand River Conservation Authority (GRCA). Boyne Creek originates from the Luther Marsh Wildlife Management Area and generally flows in an easterly direction before discharging into the Grand River. Boyne Creek meets the Grand River approximately 235 km upstream of Lake Erie. A map illustrating the Grand River watershed is contained in **Appendix "C"**.

In accordance with Town standards, a major / minor system storm conveyance concept has been incorporated into the functional servicing design for the subject development. The following sections provide a brief summary of the storm drainage components:

4.1 Minor System Design

As per the Town engineering design criteria, the proposed development is to be serviced with a minor storm sewer system that is designed to convey runoff from the 5 year storm event on local streets, and runoff from the 10 year storm on collectors. The rainfall

intensity values, *I*, are calculated in accordance with the 1961-2007 rainfall intensity duration frequency (IDF) data for the Fergus Shand Dam weather station which was obtained from Environment Canada. Based on this data the rainfall intensity for the 5 and 100 year rainfall events is calculated as follows:

$$I_5 = \frac{1525827}{(t+12.117)^{0.862}}$$

$$I_{10} = \frac{2179.495}{(t+15.119)^{0.890}}$$

$$I_{100} = \frac{4789.414}{(t + 21.844)^{0.949}}$$

The peak flows are calculated using the following formula:

 $Q = R \times A \times I \times 2.778$

where: Q = peak flow (L/s) A = area in hectares (Ha) I = rainfall intensity (mm/hr) R = composite runoff coefficient t = time of concentration (min)

The proposed storm sewer will discharge to the environmental protection lands near Boyne Creek at the southwest corner of the subject site as per the pre-development condition.

The IDF curve data is included in **Appendix "C"**. A schematic design of the minor system is illustrated in on **Dwg. FSP-1** and the catchment areas are delineated on **Figure 4**.

4.2 Major System Design

The major system will generally be comprised of an overland flow route along the municipal road network directing drainage to a safe outlet. This major system will convey flows which are in excess of the capacity of the minor storm sewer system. The major system flow route is illustrated in **Dwg. FSP-1**.

4.3 Foundation Drainage

Due to the high elevation of the SWM pond relative to the rest of the site, and in an effort to minimize the required fill, it is not possible to provide direct gravity-draining storm service connections from each lot to the storm sewer. Sump pumps will therefore be required for each unit to ensure no basement flooding as a result of the high water level in the SWM pond. A detailed hydraulic grade line (HGL) analysis is to be completed at the detailed design stage to confirm that the 100-year HGL is no more than 1.0 m above the top of the pipe, as per the Town's standards.

4.4 Roof Drainage

It is anticipated that the proposed dwellings will have conventional peaked roof with eaves troughs and downspouts. As per standard practice the downspouts are to discharge to grade over splash pads, preferably towards sodded areas. Roof downspouts are not to be connected to the storm sewer.

4.5 Flood Plain

A HEC-RAS model was prepared in order to delineate the extent of flooding through the subject site. Cross-section data, as well as bridge and culvert data, and was entered into the model based on a detailed survey of the site.

The Boyne Creek Regional (Hurricane Hazel) flow (102 cms where it joins the Grand River) was obtained from the Grand River Conservation Authority (GRCA), along with the GRCA's HEC-RAS model of the Grand River. Five flow nodes were established between the upstream and downstream boundaries of the HEC-RAS model. The upstream bounding flow node is located just upstream of the subject site, while the downstream flow node is located where Boyne Creek joins the Grand River (RS 396.9 in the GRCA's Grand River HEC-RAS model). Three additional flow nodes were established within these limits where smaller tributaries join Boyne Creek.

The flow at each flow node was calculated based on the corresponding upstream drainage area by using the transposition of flood discharges method (MTO Drainage Management Manual, 1997, Eq. 8.31):

$$Q_2 = Q_1 \cdot \left(\frac{A_2}{A_1}\right)^{0.75}$$

Where:

Q₁ = known peak discharge

Q₂ = unknown peak discharge

 A_1 = known basin area A_2 = unknown basin area

The flow at each cross-section was calculated by prorating the flow between the two bounding flow nodes based on the channel length.

The downstream Regional water surface elevation boundary condition, 454.23 m, used in the HEC-RAS model was based on the Regional water surface elevation at the corresponding location, RS 396.6, of the GRCA's Grand River HEC-RAS model.

The location of the existing floodplain based on the HEC-RAS model is shown on **Figure 6** and **Figure 7**. All proposed development, grading and pond outlet structures will be located outside of the floodplain and the area regulated by the GRCA.

Supporting HEC-RAS model output is provided in Appendix "D".

October 2018 File: **14118**

5.0 STORMWATER MANAGEMENT

5.1 Storm Drainage Areas

Based on the topographic survey and the proposed draft plan of subdivision, the following is a summary of the pre and post development drainage areas.

5.1.1 Pre-Development

There is a tributary of the Grand River (Boyne Creek) that passes to the southwest of the proposed site before it ultimately flows beneath an abandoned railway corridor and into the Grand River. The overall site topography generally falls southwesterly towards Boyne Creek. Site elevations vary from 471.90 m near County Road 25 to approximately 466.50 m in the environmental protection lands near Boyne Creek. The existing slopes range from approximately 0.35% to 9%.

The existing site land use is primarily agricultural with two small wooded areas. Figure 3 shows the drainage patterns for existing conditions.

5.1.2 Post-Development

The subject site will be developed into a mixed-use development including medium-density residential, a neighbourhood park, a SWM pond block, commercial and mixed-use (commercial and residential) areas. Drainage patterns will generally follow existing conditions, with all development area drainage to be directed through the proposed SWM facility before it discharges to the valley near Boyne Creek. The proposed SWM pond will collect drainage from the proposed development and direct it to the outlet near the south-west corner of the subject site. **Figure 4** shows the details of the proposed drainage plan for the subject site.

5.2 Stormwater Management Design Criteria

The proposed SWM facility shall be designed to provide the following levels of control as per the requirements of the Ministry of the Environment (MOE), Grand River Conservation Authority (GRCA) and Town of Grand Valley:

- Quality control: The permanent pool shall be sized to provide Enhanced (Level 1) treatment of stormwater runoff for the proposed development.
- Erosion control: Stormwater runoff from the 25 mm storm event shall be stored and released over a minimum 24 hour period.
- Flood control: Flood storage and control shall be provided to maintain peak outflows from the pond at or below pre-development levels for the critical of the 12 & 24-hour SCS and 1, 6 & 12-hour AES, and the 3-hour Chicago storm distributions for the 2-yr through 100-yr design storm events.

5.3 Stormwater Management Pond Design

A SWM facility is proposed to serve the subject development area. This SWM facility will discharge through a level spreader outfall located near the south-west corner of the development area. The total service area for the SWM facility is approximately 9.41 ha. The proposed SWM facility is located to the east of the proposed *Street "A"* collector road, to the northeast of Boyne Creek as illustrated in **Figure 4**.

Per the Town standards and MOE SWM pond criteria, the SWM facility design includes 5H:1V side slopes above and below the permanent pool level. This also meets the MOE requirement to provide a 5H:1V safety shelf for 3.0m on either side of the permanent pool elevation (NWL) of 467.30 m. A 5.0 m wide access road with maximum 10% slope has been provided to the bottom of the forebay and access to the facility is provided from the subdivision. The details of the proposed SWM facility are provided on **Dwg. SWM-1** and **Dwg. SWM-2**.

5.3.1 Quality Control

Various source controls, conveyance and end-of-pipe SWM facilities were considered to provide the appropriate level of stormwater quality control. Reduced lot grades, rear and side yard swales, and discharge of roof leaders to pervious surfaces will augment the control provided by the SWM facility and promote infiltration where possible. Based on a preliminary review of available controls, it appears that the primary and most effective option to provide water quality control for runoff from the contributing drainage areas is a SWM facility. The options reviewed are as follows:

- Roof Leader to Ponding Areas or Soakaway Pits (Lot Level): The Town design criteria do not address the use of ponding areas or soakaway pits in the rear yards. Roof leaders will discharge directly to pervious surfaces to encourage infiltration and filtration on the lots. Soakaway pits can be an effective means of improving infiltration of stormwater, but require a large area in comparison to typical residential rear yard dimensions. As a result, soakaway pits and ponding areas are not recommended.
- Grassed Swales (Conveyance): Rear and side yard swales will be incorporated into the grading plan. The swales will convey runoff to rear lot catch basins. The number of rear lot catch basins will be minimized in order to encourage infiltration via swales.
- Stormwater Management Facilities (End-of-Pipe): Based on discussions with the GRCA, SWM facilities are required to provide water quality, extended detention and flood control of stormwater runoff. Stormwater management facilities will be constructed within the subject property.
- Oil/Grit Separation Technologies (End-of-Pipe): These SWM facilities can be
 effective for smaller, high impervious sites where spill protection is desired
 and when area for a stormwater pond is unavailable. The construction of the
 stormwater pond will eliminate the need for any oil/grit separation units.
- Infiltration Trenches/Basins (End-of-Pipe): These SWM facilities are most effective in areas with highly pervious soils and large areas.

October 2018 File: **14118**

In accordance with the GRCA requirements for development within the Boyne Creek watershed, a minimum of Enhanced (Level 1) water quality protection shall be provided by the proposed SWM facility.

The developed drainage area to the SWM facility consists of approximately 9.07 ha. The total assumed imperviousness of the drainage area to the SWM facility is 70%. The required permanent pool volume for the SWM facility based on a wet pond design is provided below.

SWM Facility (Wetland) Permanent Pool Volume Calculation

Volume required for catchment with 68% imperviousness:	225.0	m³/ha
Less 40 m ³ /ha of extended detention storage zone:	- 40.0	m³/ha
Permanent pool volume required:	185.0	m³/ha

The permanent pool storage volume required for the wetland SWM facility is therefore $185.0 \text{ m}^3/\text{ha} \times 9.07 \text{ ha} = 1,678 \text{ m}^3$.

The requirement for a pond liner will be confirmed at detailed design in order to maintain a permanent pool of water in the pond and to prevent the mixing of surface water with ground water.

The normal water level of the permanent pool for the pond is set at an elevation of 467.30 m. The bottom of the pond is set at an elevation of 465.30 m. This provides a permanent pool depth of 2.00 m.

The actual permanent pool storage volume provided is approximately 3,303 m³ which is greater than the minimum required volume to meet the Enhanced (Level 1) quality control requirement. The required and provided quality control volume together with the elevation of the normal water level are summarized in **Table 5**.

The forebay has been sized based on MOE design criteria and supporting calculations are provided below.

Forebay Sizing Calculations

The proposed forebay is approximately 43 m in length and 21 m in width, on average. The resultant length-to-width ratio is therefore 2:1. Using the methodology provided in the Stormwater Management Planning and Design Manual, the recommended forebay length based on particulate settling is calculated using the following expression:

$$Dist = \sqrt{\frac{r \cdot Q_p}{V_s}}$$
 [1]

where: Dist is the forebay length (m) r is the length-to-width ratio of the forebay (2:1 or r = 2)

 Q_p is the pond's peak discharge (0.013 m³/s, VO2 modelling of 25 mm storm)

 V_s is the settling velocity (0.0003 m/s for 150 μ m particles)

Solving [1] gives:

$$Dist = \sqrt{\frac{2 \times 0.013}{0.0003}} = 9.3 \ m$$

The recommended forebay length based on flow dispersion calculations is calculated using the following expression:

$$Dist = \frac{8 \cdot Q}{d \cdot V_f}$$
 [2]

where: *Dist* is the forebay length (m)

Q is the peak inlet flow (1.926 m³/s, VO2 modeling of 5-year storm for *Catchments 202*, and 10-year storm for *Catchments 102 & 201*)

d is the depth of the permanent pool in the forebay, assuming 1.00 m depth of sediment accumulation (1.00 m)

 V_t is the desired velocity in the forebay (0.50 m/s)

Solving [2] gives:

$$Dist = \frac{8 \times 1.926}{1.00 \times 0.50} = 30.8 m$$

The distance from the headwall (HW.1) to the forebay weir is 43 m. The proposed design therefore satisfies the minimum forebay length recommendations.

The minimum recommended forebay bottom width is calculated as follows, based on the maximum distance from the calculations above:

$$Width = \frac{Dist}{8} = \frac{30.8}{8} = 3.9 m$$
 [3]

The design proposes an average forebay bottom width of approximately 7.0 m, which satisfies this criterion.

In accordance with the SWMP Manual, it is recommended that the maximum average velocity in the forebay is 0.15 m/s. This velocity corresponds the maximum permissible velocity that can be achieved before erosion will start to occur. The minor system flow into the forebay is 1.926 cms. The average cross-sectional area of the forebay (assuming 1.00 m depth) is approximately 18.5 m². The average velocity is therefore 0.104 m/s (1.926 m³/s \div 18.5 m² = 0.104 m/s), which is less than the maximum permissible velocity of 0.15 m/s.

Sediment Loading and Forebay Cleanout Calculations

In accordance with the SWMP Manual, it is recommended that the frequency of sediment removal be determined based on a 5% reduction in the total suspended solids (TSS) removal efficiency of the permanent pool, or once the forebay reaches 80% of its capacity for sediment below the normal water level.

Based on a request by the GRCA, the forebay is to maintain a minimum depth of 1.00 m before sediment cleanout is required in order to satisfy the sediment settling requirements, as per the calculations above. The proposed forebay has been sized to provide a sediment storage volume of 224 m³ below elevation 466.30 m, such that the forebay has a minimum depth of 1.00 m below the normal water level before sediment removal is required. The forebay sediment storage volume 1.00 m below the normal water level (224 m³) therefore corresponds to 25.9% of the total forebay volume below the normal water level (864 m³).

In order to achieve an enhanced (80%) level of TSS removal efficiency, the required pond permanent pool volume is 1,678 m³, as calculated above. A TSS removal efficiency of 75% (a 5% decrease from 80%) would require a permanent pool volume of 1,247 m³. The proposed pond has a permanent pool volume of 3,303 m³ with no sediment loading, and a permanent pool volume of 3,079 m³ with 224 m³ of sediment storage. Based on this the proposed pond will maintain a minimum of 80% TSS removal efficiency even with the provided forebay sediment storage volume being utilized.

As per *Table 6.3* from the *MOE Stormwater Management Planning and Design Manual*, the annual sediment loading for a catchment with 70% imperviousness is 2.8 m³/ha. The annual sediment loading for the pond is therefore 2.8 m³/ha \times 9.07 ha = 25.4 m³. The forebay sediment storage volume corresponds to approximately the 9-year sediment loading volume (224 m³ \div 25.4 m³/year = 8.8 years).

Based on the above calculations, the estimated forebay cleanout period is 9 years.

5.3.2 Erosion Control

In accordance with the GRCA guidelines, erosion control shall be provided using an extended detention active storage zone sized to capture the runoff resulting from a 25 mm rainfall event and to release the runoff over a period of at least 24 hours. Based on results using the Visual OTTHYMO 2.0 (VO2) model, the required erosion volume for the SWM facility is 1,485 m³, based on a runoff volume of 14.88 mm over a total drainage area of 9.98 ha. The VO2 model parameters and the results are included in **Appendix "D"**.

Based on the design for the SWM pond, the erosion control volume provided is 1,641 $\rm m^3$ at an elevation of 467.80 m. This meets and/or exceeds the respective erosion volume requirement of 1,485 $\rm m^3$ for the pond. The proposed extended detention depth is 0.50 m, which is less than the maximum recommended extended detention depth of 1.00 m.

The required detention time and release rate will be achieved using an orifice plate installed within the pond outlet control structure.

The extended detention active storage zone will capture the runoff volume resulting from a 25 mm rainfall event and release it over a period exceeding the required 24-hour detention. A 4-hour, 25 mm Chicago distribution storm was used for this analysis. Based on the calculations below, the drawdown time for the proposed SWM facility is approximately 53.8 hours with a 100 mm diameter orifice, which meets the minimum 24-hour release criteria (48 hours is considered preferable). More detailed calculations are provided in **Table D.8** in **Appendix "D"**.

The orifice size, erosion control release rate, draw down time, extended detention volume and water level are summarized in **Table 5**.

5.3.3 Quantity Control

Per the GRCA's requirements, the SWM facility shall be designed to control the post-development peak flow to pre-development levels for the 2-year through 100-year design storms and to safely convey the Regional flow. The SWM facility will be sized to control post-development peak flows to pre-development levels up to and including the 100-year storm using the VO2 model and the 1-hour AES storm distribution, created using the latest Fergus Shand Dam IDF data obtained from Environment Canada as specified in the Town of Grand Valley standards. The 1-hour AES storm distribution was determined to be critical based on a critical storm analysis completed for the proposed SWM facility. The pre-development flow targets are provided in **Table 4**. The critical storm analysis is provided in **Table D.9** which is included in **Appendix "D"** together with the VO2 model schematic, catchments and pre-development flow calculations.

Table 4 shows the peak flows calculated in VO2 for each return period. **Table 5** shows the SWM facility performance characteristics for each return period event based on the preliminary outlet structure design and rating curve. The rating curve includes quality and quantity control structures and an emergency spillway. The actual pond performance, outlet structure design and rating curve will be confirmed at detailed design.

The SWM pond has been designed with a total active storage volume of 4,643 m³ at an elevation of 468.50 m. The expected maximum storage required during 100 year storm conditions is approximately 4,606 m³. The provided active storage for the pond is therefore sufficient. As shown in **Table 4**, the peak discharge rates are equal to or less than the target release rates. The preliminary rating curve is presented in **Table D.5** which is included in **Appendix "D"** together with the output from the VO2 modeling of the SWM pond.

October 2018 File: **14118**

Table 4. Summary of Storm Drainage Peak Flows

Return Period	Existing Peak Flows (m³/s)	Proposed Peak Flow (m³/s)
2-yr 1-hr AES	0.115	0.045
5-yr 1-hr AES	0.315	0.262
10-yr 1-hr AES	0.486	0.459
25-yr 1-hr AES	0.731	0.647
50-yr 1-hr AES	0.933	0.783
100-yr 1-hr AES	1.145	0.916

5.3.4 Thermal Mitigation Measures

Mitigation measures shall be incorporated into the SWM pond design to minimize thermal impacts to the receiving watercourse. These measures include a bottom draw pipe and a planting strategy to promote shading along the pond perimeter.

Bottom Draw Pipe

Instead of the common perforated riser configuration, a bottom draw pipe will be implemented for the extended detention component to discharge water from the deepest section of the pond where the water temperature is lowest. This outlet consists of a submerged intake headwall and a bottom draw pipe which discharges via an orifice plate in the quality control structure. Given that this pipe is sized for frequent rainfall events (25mm storm), it will provide the greatest benefit to the thermal regime of the receiving watercourse.

Planting Strategy

In accordance with the Town and GRCA requirements the SWM facility will be planted to provide a natural appearance and to provide environmental benefits. The landscape plan will specify shade producing species to minimize solar heating of the permanent pool during summer months. The forebay design provides additional pond perimeter where shade producing vegetation can be planted.

5.3.5 SWM Pond Inspection & Maintenance

The stormwater management facility should be inspected periodically to determine the frequency of maintenance activities. As such, maintenance activities will be performed on an as-required basis. During the first two years of operation, it is recommended that the stormwater management facility be inspected following significant storm events to determine if and when maintenance activities are required. Subsequently, inspections should be carried out twice per year. The following items should be considered when inspecting the pond:

- October 2018 File: **14118**
- Sediment accumulation to determine cleanout requirements;
- Erosion of side slopes and outfall channel;
- Safety hazards;
- Hydraulic operation of the pond;
- Drawdown time following a rainfall event (extended drawdown time greater than 50 hours may indicate a blocked orifice or intake);
- Condition of terrestrial and aquatic vegetation;
- Trash accumulation near hydraulic structures; and
- Surface sheen indicating possible oil contamination.

October 2018 File: **14118**

Table 5. Stormwater Facility Performance Summary

Quality Control		
	Protection Level	Level 1 (Enhanced)
	Permanent Pool Required (m³)	1,678
	Permanent Pool Provided (m3)	3,303
	Normal Water Level, NWL (m)	467.30

Erosion Control			
25-mm 4-hour Chicago Orifice Size (mm) 100			
	Draw Down Time (hrs)	53.8	
	Flow In (m ³ /s)	0.566	
	Flow Out (m ³ /s)	0.013	
	Storage Used (m ³)	1,352	
	Pond W.S. Elevation (m)	467.72	

Quantity Control		
	Flow in (m ³ /s)	1.111
2 Year Storm Event	Flow Out (m ³ /s)	0.013
2 Year Storm Event	Storage Used (m³)	1,463
4	Pond W.S. Elevation (m)	467.75
	Flow in (m ³ /s)	1.865
E Voor Storm Event	Flow Out (m ³ /s)	0.170
5 Year Storm Event	Storage Used (m³)	2,286
	Pond W.S. Elevation (m)	467.97
	Flow in (m ³ /s)	2.382
10 Year Storm Event	Flow Out (m ³ /s)	0.313
10 Year Storm Event	Storage Used (m³)	2,778
	Pond W.S. Elevation (m)	468.09
	Flow in (m ³ /s)	3.054
25 Year Storm Event	Flow Out (m ³ /s)	0.422
25 Year Storm Event	Storage Used (m³)	3,471
	Pond W.S. Elevation (m)	468.25
	Flow in (m ³ /s)	3.573
50 Year Storm Event	Flow Out (m ³ /s)	0.491
50 Year Storm Event	Storage Used (m³)	4,025
	Pond W.S. Elevation (m)	468.37
	Flow in (m ³ /s)	4.098
100 Year Storm Event	Flow Out (m ³ /s)	0.553
100 Year Storm Event	Storage Used (m³)	4,606
	Pond W.S. Elevation (m)	468.49
	Flow in (m ³ /s)	1.506
Regional Storm	Flow Out (m ³ /s)	1.486
(Hurricane Hazel)	Storage Used (m³)	4,928
	Pond W.S. Elevation (m)	468.56

October 2018 File: **14118**

5.4 Site Water Balance

In accordance with the requirements of the GRCA, a site water balance assessment was completed for the subject development area to determine the overall infiltration deficit under proposed conditions and to design infiltration facilities as part of an overall mitigation strategy to maintain pre-development infiltration volumes. Data for the assessment was obtained from soil mapping obtained from the Ontario Soil Survey mapping for Dufferin County, satellite imagery and the <u>Stormwater Management Planning and Design Manual</u> (Ministry of the Environment, March 2003). These documents provide information with respect to the soil types and soil infiltration rates. The following sections detail the methodology, volume calculations and proposed infiltration mitigation measures necessary to achieve a post-development site infiltration balance.

5.4.1 Methodology

The approach for estimating water balance volumes is based on the method described in the Stormwater Management Planning and Design Manual (MOE, 2003). The assessment was completed for the site using soils and land use information to calculate weighted evapotranspiration values. Weighted water surplus volumes were then calculated and a weighted infiltration factor was calculated. Surplus volumes were then split into runoff and infiltration components for existing and proposed conditions.

In order to perform the water balance analysis, the site (14.89 ha) was divided into two areas; the area to remain undeveloped (5.09 ha) and the area to be developed (9.80 ha). With regards to land use, the analysis reflects existing conditions which is described as a combination of agricultural, meadow, and forest land cover. The proposed land use is residential and mixed-use (commercial-residential) with the pervious component being limited to the lawn areas.

The assumed hydrologic soil group (HSG) for the site was based on a review of soils mapping, which showed the predominant soil type within the subject development to be HSG "BC". Under proposed conditions, it is assumed that existing soils will be used in the grading of the proposed development and therefore HSG "BC" soils were also assumed for the site under proposed conditions. The existing site soils were assumed to have a 15mm/hr percolation rate for the calculation of the infiltration trench maximum depth. It is recommended that a percolation rate be provided by the geotechnical consultant at detailed design to confirm the maximum allowable infiltration trench depth.

The water balance calculations including water holding capacity assessment, infiltration factor selection, rainfall analysis and evapotranspiration analysis are provided in **Table E.1** to **Table E.5** which are contained in **Appendix "E"**.

October 2018 File: **14118**

5.4.2 Existing Conditions Water Balance Volumes

The pre-development baseline site infiltration condition was calculated using the Toronto Pearson Airport Climate Normal 1971 – 2000 data from Environment Canada and the current land cover and land use pattern. Based on the MOE Infiltration Factor Method, the calculated infiltration factor for the site under existing conditions was 0.545 for the area to remain undeveloped, and 0.515 for the area to be developed. For the area to remain undeveloped, the analysis indicates that the existing annual surplus is 10,375 m³ and the annual infiltration capacity is 5,654 m³. For the area to be developed, the analysis indicates that the existing annual surplus is 20,135 m³ and the annual infiltration capacity is 10,377 m³. The results of the annual water balance analysis for the existing conditions are presented in the first (area to not be developed) and third row (area to be developed) of **Table E.1**.

5.4.3 Post-Development Unmitigated Water Balance Volumes

For the 5.09 ha area that is to remain undeveloped, the proposed annual surplus and annual infiltration capacity will remain unchanged, as shown in the second row of **Table E.1**.

For the 9.80 ha area to be developed, it is estimated that approximately 6,306 m³ of water will infiltrate the ground under post-development conditions without implementing any infiltration mitigation measures. This represents 60.8% of the existing infiltration volume for this area. The notable reduction in infiltration volume is the result of an increase in the impervious area associated with the proposed development. The results of the annual water balance analysis for the proposed condition, with no infiltration best management practices, are presented in the fourth row of **Table E.1**. Therefore, mitigation measures are necessary to achieve the site infiltration water balance.

5.4.4 Site Infiltration Mitigation Measures

In order to minimize the impact of development on the future water balance for the site, infiltration mitigation measures will be promoted and incorporated within the proposed development. These measures include basic and enhanced best management practices (BMPs) as follows:

Basic Best Management Practices

The following basic BMPs are to be implemented on the subject site:

- Roof down spouts of the dwellings will be directed to pervious lawn areas and grassed swales where feasible to promote infiltration;
- Where applicable, grassed swales will be constructed along side and rear lot lines;
- For lots abutting existing valley areas, all roof drainage and rear yard drainage is to sheet flow across the buffer, where possible, to encourage infiltration; and

• Where possible, the fine grading of lots will be completed with an extra depth of topsoil to encourage infiltration and absorption.

For the 9.80 ha area to be developed, it is estimated that approximately 7,531 m³ of water will infiltrate the ground under post-development conditions with the implementation of the above-mentioned infiltration BMPs. This represents 72.6% of the existing infiltration volume for this area.

It is assumed that each of the approximately 95 proposed lots has an average roof area of 150 m², which will need to be confirmed at detailed design. The fifth row of **Table E.1** provides the summary of the calculations for the post-development condition with basic infiltration BMPs.

Enhanced Best Management Practices

In an effort to better match the existing infiltration volumes, enhanced infiltration BMPs in the form of infiltration trenches is required. These measures will serve to further promote the infiltration of runoff from the proposed development.

Through the implementation of the proposed infiltration trenches, the annual infiltration capacity can increase by 2,875 m³. As a result, the post-development infiltration volumes for the site will be 10,407 m³, which is 100.3% of the predevelopment volume.

The areas directed to the infiltration trenches will include the roof areas of the commercial and mixed use blocks (Block 5 & Block 6), and the rear yard areas of lots backing onto the SWM block or open space block (Lot 57 to Lot 72). A summary of the infiltration trench sizing is provided in **Table E.7** and **Table E.8** which are included in **Appendix "E"**.

The location of the infiltration trenches are indicated in **Figure 4**. It is recommended that infiltration trenches be designed with a provision for over-flow. Specific sizing details for the proposed infiltration trenches will be provided at detailed design.

6.0 VEHICULAR & PEDESTRIAN ACCESS

The layout of the proposed subdivision has been developed with consideration for efficient and safe access and circulation of both vehicular and pedestrian traffic.

6.1 Municipal Roads

The subject site has frontage on County Road 25 which is under the jurisdiction of the County of Dufferin. This road consists of a rural cross section having two lanes with gravel shoulders and road site ditches. The vehicular access to the subdivision will be facilitated by a proposed collector road (Street 'A') which will intersect County Road 25 at Industrial Drive and extend north westerly through the subdivision. This collector road will have a 26.0m wide road allowance and is planned to eventually extend northerly through planned

developments north of Melody Lane. The balance of the proposed roads within the subdivision will have 20.0m wide road allowances. All of the roads will be constructed with 2% surface cross fall and edged with concrete curb and gutter. The longitudinal slope of the road will generally be 0.5% with some length of road ranging up to 5.0% slope. A copy of a typical road cross section is included in **Appendix "F"**.

Based on the Town standards, the minimum pavement structure for the proposed roads is as follows:

Municipal Roads

<u>Material</u>	Local Road	Collector Road
HL3 Asphalt	40mm	50mm
HL8 Asphalt	50mm	60mm
Granular "A"	150mm	150mm
Granular "B"	450mm	600mm

6.2 Driveways & Parking

Units will likely require parking by way of driveways or surface parking lots for the mixed use units. The recommended pavement structure for passenger car parking is as follows:

Passenger Car Parking

<u>Material</u>	Compacted Depth
Asphalt Concrete	50mm
Granular "A"	150mm
Granular "B"	200mm

The slope of driveways and parking is to be within the range of 2.0% to 6.0% in accordance with Town criteria.

6.3 Sidewalks, Walkways & Trails

Internal pedestrian access will be provided by standard 1.5m wide concrete sidewalks to safely guide residents through the subdivision for access to the proposed units and the adjacent existing road allowance. Sidewalks will be generally be constructed on one side of each road.

The configuration of the proposed sidewalks are illustrated on **Dwg. FSP-1**. A copy of the standard sidewalk detail is included in **Appendix "F"**.

7.0 GRADING

As is typical will all subdivision, earthmoving is required, to varying degrees, in order to achieve the municipal design criteria and accommodate the development form.

October 2018 File: **14118**

7.1 Grading Criteria

The subject site is to be graded in accordance with the Town grading criterion which dictates that road grades are to range from 0.5% to 8.0% and that sodded yard areas are to range from 2.0% to 4.0%. For large grade differentials, a maximum slope 4H: 1V can be used for sodded embankments. In areas where space is limited, retaining walls can be utilized to accommodate grade differentials, however, their use should be minimized.

7.2 Preliminary Design

Based on the topographic survey, the proposed subdivision configuration and the Township's criteria, a preliminary grading design has been prepared. The preliminary grading design, considered the following factors:

- Achieve the Town's lot grading criteria.
- Meet the Town's vertical road design parameters.
- Minimize the requirement for retaining walls.
- Match existing grades along the adjacent properties and road allowances.
- Grading along existing road allowances is to have consideration for their future urbanization and grades are to be established to accommodate future boulevard slopes in the range of 2 to 4%.
- Provide an overland flow route to direct drainage to a safe outlet.
- Provide sufficient cover over the sanitary sewer and storm sewer.

The preliminary grading design for the subdivision is presented in **Dwg PGR-1**. A preliminary analysis of the earthworks was conducted using digital terrain modelling software to determine the magnitude of the volumes and it was determined that approximately 18,000 m³ of fill is required. This fill will be available as surplus material from the planned earthworks operations for the proposed Moco Subdivision which is in close proximity to the subject site. Further analysis will be conducted at the detailed design stage to optimize and verify the quantities. Based on the preliminary design, no significant difficulties are anticipated in achieving the municipal grading design standards.

7.3 Permitting

A review of the Regulation Mapping indicates that the subject site is located within an area that is regulated by the GRCA. A grading permit is therefore required from their office under Ontario Regulation 166/06 prior to commencing topsoil stripping and earthworks. The permit application should be submitted in conjunction with the detailed design at the subdivision engineering stage.

In addition, a clearance letter from the Ministry of Tourism, Culture and Sport (MTSC) is required prior to commencing topsoil stripping and earthworks. In this regard and as per standard practice for subdivisions, an investigation is to be conducted by a licensed archaeologist and a report is to be submitted to the MTSC for approval. Such investigations typically consists of background research and a visual inspection of the lands after it has been ploughed and weathered by two rainfall events which will assist in exposing any archaeological resources that may be present.

8.0 EROSION & SEDIMENT CONTROL DURING CONSTRUCTION

Construction activity, especially operations involving the handling of earthen material, dramatically increases the availability of particulate matter for erosion and transport by surface drainage. In order to mitigate the adverse environmental impacts caused by the release of silt-laden stormwater runoff into receiving watercourses, measures for erosion and sediment control are required for construction sites. This is an extremely important component of land development that plays a large role in the protection of downstream watercourses and aquatic habitat. It is of particular concern for this site given the proximity of the site to a watercourse and environmental protection block.

The impact of construction on the environment is recognized by the Greater Golden Horseshoe Area Conservation Authorities. In December 2006 they released their document titled Erosion & Sediment Control Guidelines for Urban Construction (ESC Guideline). This document provides guidance for the preparation of effective erosion and sediment control plans.

Control measures must be selected that are appropriate for the erosion potential of the site and it is important that they be implemented and modified on a staged basis to reflect the site activities. Furthermore, their effectiveness decreases with sediment loading and therefore inspection and maintenance is required. The selection, implementation, inspection and maintenance of the control features are summarized as follows:

8.1 Control Measures

On relatively large sites, measures for erosion and sediment control typically include the use of sediment control basins, silt fencing, a mud mat and sediment traps. The following is a description of the sediment controls to be implemented on the subject site:

- Temporary Sediment Control Basins are commonly used to clarify silt-laden stormwater runoff by promoting sedimentation of the suspended particles in the runoff through long detention times. The proposed SWM pond will be utilized as temporary sediment control basins during construction. The basin is to be sized in accordance with the ESC Guideline based on a required storage volume of 250 m³ per hectare of disturbed area (125 m³/ha of permanent pool and 125 m³/ha of active storage). The basin's outlet is to have a Hickenbottom riser and a minimum 75mm diameter orifice plate sized to provide a drawdown time in the order of 48 hours.
- Silt Fences are to be installed adjacent to all property limits subject to drainage from the development area prior to topsoil stripping and in other locations, such as at the bases of topsoil stockpiles. It is recommended that earthworks not extend immediately adjacent to the silt fence and instead 1m to 2m vegetated buffer be maintained for additional protection. The silt fences are to be constructed with 150 x 150mm wire farm fence fabric to properly support the geotextile. Heavy duty silt fence is recommended to be installed adjacent the valley and watercourse to the east of the development area, consisting of two rows of fence with a row of staked straw bales between.
- Mud Mat is to be installed at the construction entrance prior to commencing earthworks to minimize the tracking of mud onto municipal roads.

- October 2018 File: **14118**
- **Sediment Traps** are to be installed at all catchbasin locations once the storm sewer system has been constructed to prevent silt laden runoff from entering.
- Rock Check Dams are to be constructed in swales and ditches to reduce velocities and trap sediment.
- Erosion Protection in the form of a level spreader or vegetative buffers are be provided immediately downstream pond outlets to ensure that sediment is not released and / or created as a result of the concentrated discharge.

A set of Erosion and Sediment Control Plans are to be prepared at the detailed engineering design stage to reflect the various construction stages. Details of typical erosion and sediment control measures are included in **Appendix "H"**.

8.2 Construction Sequencing

The following is a summary of the scheduling of construction activities and the related implementation of sediment controls:

Stage 1 - Subdivision Earthworks

- 1. Construct mud mat for temporary construction access.
- 2. Install primary silt fencing around the limits of grading and secondary silt fencing along the south limit of the work area adjacent the existing wetland.
- 3. Install temporary swales and rock check dams.
- 4. Excavate and construct the temporary sediment basins including installation of hickenbottom drain and spillway and connect to temporary swales.
- 5. Strip any remaining topsoil, stockpile where indicated and install silt fence around the perimeter.
- 6. Rough grade the site by placing cut material in fill areas and spreading and compacting of imported fill. Maintain the mud mat to minimize the tracking of silt onto the municipal road and provide street sweeping as necessary.

Stage 2 – Subdivision Servicing & Road Construction

- 1. Install underground servicing, covering the end of the pipe at the end of each work day to ensure that silt does not enter the storm sewer.
- 2. Construct roads, install sediment controls on catchbasins and install temporary hickenbottom drains at low point of lot blocks.

Stage 3 - House Construction

- 1. Construct houses and maintain all sediment controls including regular street sweeping and catchbasin cleaning.
- 2. Stabilize all lot surfaces as soon as possible after completion of the houses.
- 3. Remove silt fencing on a phased basis as areas are stabilized.

8.3 ESC Inspection & Maintenance

In order to ensure that the erosion and sediment control measures operate effectively, they are to be regularly monitored and they will require periodic cleaning (e.g., removal of accumulated silt), maintenance and/or re-construction.

Inspections of all of the erosion and sediment controls on the construction site should be undertaken with the following frequency:

- On a weekly basis
- After every rainfall event
- After significant snow melt events
- Prior to forecasted rainfall events

If damaged control measures are found they should be repaired and/or replaced within 48 hours. Site inspection staff and construction managers should refer to the Erosion and Sediment Control Inspection Guide (2008) prepared by the Greater Golden Horseshoe Area Conservation Authorities. This Inspection Guide provides information related to the inspection reporting, problem response and proper installation techniques.

9.0 UTILITIES

While some external upgrades may be necessary by the utility providers, it is anticipated that utilities such as hydro, natural gas, cable television, and telephone service will be available to service the subject development. As per standard practice in subdivisions, utilities will be installed underground. Co-ordination with the local hydro authority and the various utility companies will be undertaken at the detailed engineering design stage to determine appropriate locations for pedestals, transformers and street lights.

It is recommended that the utility installation be in the form of a joint trench as outlined in the Town's Design Standards. The process of joint trenching allows all of the utility companies to coordinate the placement of their lines in a common trench excavated by a single utility contractor. Joint trenching maximizes the efficiency of the available area in the utility corridor and provides for a safe installation. A detail of the typical utility corridor location is included in the road cross-section details within **Appendix "F"**.

10.0 SUMMARY

Based on the analysis contained herein, the proposed residential subdivision can be adequately serviced with full municipal services (watermain, wastewater and storm) in accordance with the standards of the Town of Grand Valley, the County of Dufferin and the Grand River Conservation Authority design criteria and consists of the following:

Water

- The existing water supply system in the Town of Grand Valley consists of 3 wells with an
 elevated water tower located off County Road 25, north of Fife Road functioning as part
 of the water distribution system and supplementing the well supply during high demand
 periods.
- The existing water infrastructure is not be able to meet the future demand and that an
 additional water tower at the south end of the Town to accommodate the demand be
 investigated by Class EA study to determine the ability meet the impending requirement.
- A trunk watermain is proposed to be extended from its current terminus southerly from the
 existing WPCP along County Road 25 and across the frontage to the southern entrance
 of the subject site, facilitating a loop per Town standards.
- A local water distribution system will be constructed along the roads to provide domestic supply and fire protection for the proposed dwellings. This local system will connect to the trunk watermain. Based on the Ontario Building Code (OBC 2012) requirements, the water service connections for the individual townhouse units are to be 25mm diameter.

Waste Water

- The Town is currently serviced by the existing Grand Valley Wastewater Pollution Control Plant (WPCP) located at the east end of Industrial Road. A 2013 Capacity Study completed for the WPCP concluded that a Class EA Study be undertaken to further examine the need to increase capacity to accommodate the impending developments.
- Variances in the data between baseline reports completed for this area and the proposed development presented as part of this Report has necessitated revisions to the wastewater strategy mainly conveying the Corseed wastewater flow south to the proposed Sanitary Pumping Station (SPS-A) north of the Moco Lands to alleviate impacts to the existing system.
- A sanitary sewer system will be constructed along the roads to provide service to the proposed dwellings. The local system will connect to a proposed sewer along County Road 25 to SPS-A and will convey flow to the WPCP as initially recommended by the baseline reports. In accordance with Town standards, the dwellings will be serviced with individual sanitary connections.

Storm Drainage

- The subject site is located in the Boyne Creek subwatershed. Boyne Creek drains to the Grand River which discharges to Lake Erie.
- In accordance with Town criteria, the subject site will be serviced by minor system comprised of a municipal storm sewer sized for the 5-year storm event for local roads and 10-year storm event for collector roads. This storm sewer will outlet to environmental

- protection lands adjacent Boyne Creek near the west side of the subject site as per the pre-development condition.
- The major system will be comprised of an overland flow route which will convey runoff from rainfall events in excess of the capacity of the municipal storm sewer to a safe outlet.
- The flood plain of Boyne Creek is contained entirely within the valley lands and therefore the proposed residential lots and the stormwater management pond are outside the Regulatory flood plain.

Stormwater Management

- A stormwater management facility will be constructed to service the subject property. This
 facility has been designed as a wet pond to provide a minimum of Enhanced (Level 1)
 water quality treatment, extended detention for erosion control and flood control using the
 calculated pre-development flow targets up to and including the 100-year storm event.
 The wet pond consists of a sediment forebay and a main cell separated by a forebay berm.
- Thermal mitigation measures are to be incorporated in the design of the pond including bottom draw pipe and a planting strategy to provide shading around the pond perimeter.
- A site water balance assessment has been undertaken to ensure that pre-development infiltration volumes are maintained. Based on the analysis it was determined that mitigation measures are required in the form of infiltration trenches.

Vehicular & Pedestrian Access

- Vehicular access to the subject site will be provided by one road connection to County Road 25.
- The proposed local roads will be constructed to urban standards having 20m and 26m wide road allowances where appropriate.
- Pedestrian access will be provided by 1.5m wide concrete sidewalks which are to be generally located on one side of each road.

Grading

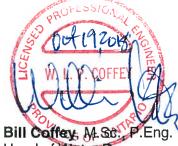
- As is typical with large subdivision projects, earthmoving will be required to achieve the
 proposed subdivision grading necessary to meet the criteria of the Town. A detailed
 analysis of the earthworks will be conducted at the detailed design stage to optimize the
 cut and fill volumes. Based on the preliminary design, no significant difficulties are
 anticipated in achieving the municipal grading design standards.
- Since the subject site is located in an area which regulated by the GRCA, a permit will be required from their office prior to commencing earthworks. In addition, an archaeological clearance letter will be required from the Ministry of Tourism, Culture and Sport

Erosion & Sediment Control During Construction

 Erosion and sediment control (ESC) measures are to be implemented during construction to prevent silt laden runoff downstream in accordance with the Erosion & Sediment Control Guidelines for Urban Construction (December 2006). The ESC plans are to be prepared at the detailed engineering design stage and are to reflect the various construction stages.

Subdivision Engineering Design

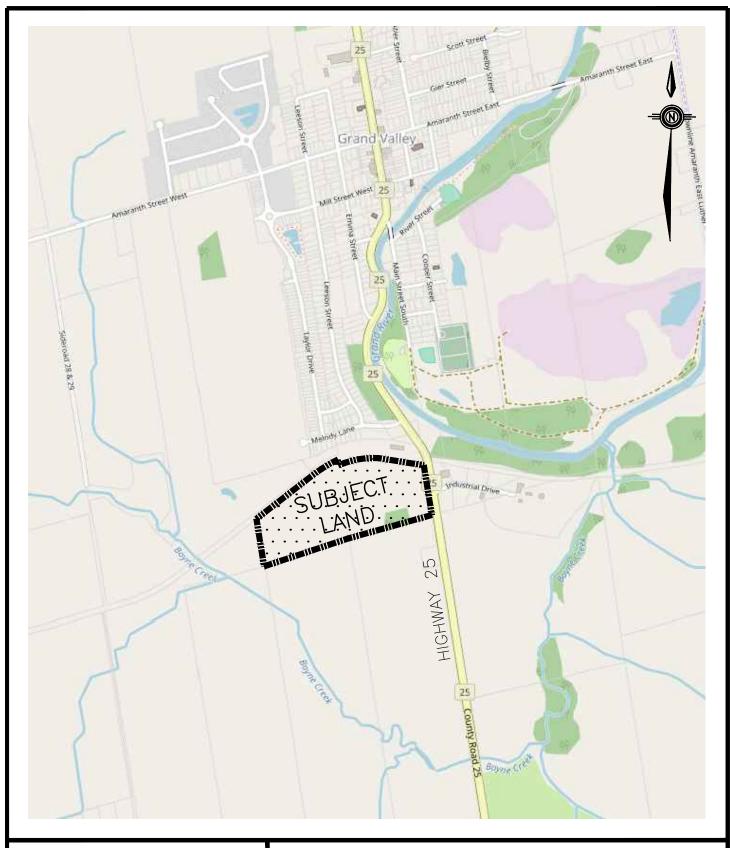
 Detailed design for the proposed development is to be prepared at the subdivision engineering stage. This detailed design is to include servicing and grading plans as well as a stormwater management report based on the criteria established in this Functional Servicing Report.


11.0 REFERENCES & BIBLIOGRAPHY

- R.J. Burnside & Associates Ltd., Grand Valley Master Servicing Plan (MSP) Update - Technical Memorandum, 30 May 2014.
- XCG Consultants Ltd., Assimilative Capacity Study of the Grand River for the Grand Valley WPCP, 21 October 2013.
- V.A. Wood (Guelph) Inc., **Geotechnical Investigation G3524-4-11**, November 2014.
- Innovative Planning Solutions, Draft Plan of Subdivision, 10 September 2018.
- Town of Grand Valley, Engineering Standards, November 2013.
- Town of Grand Valley, Official Plan, February 2014.
- Ontario Ministry of Environment, Stormwater Management Planning and Design Manual, March 2003.
- Ontario Ministry of Transportation, Drainage Management Manual, 1997.
- Greater Golden Horseshoe Area Conservation Authorities, Erosion & Sediment Control Guidelines for Urban Construction, December 2006.
- Fire Underwriters Survey, Water Supply for Public Fire Protection, 1999.
- Ministry of Municipal Affairs & Housing, Ontario Building Code, 2012.

Respectfully Submitted, **VALDOR ENGINEERING INC.**

David Giugovaz, P.Eng. Senior Project Manager

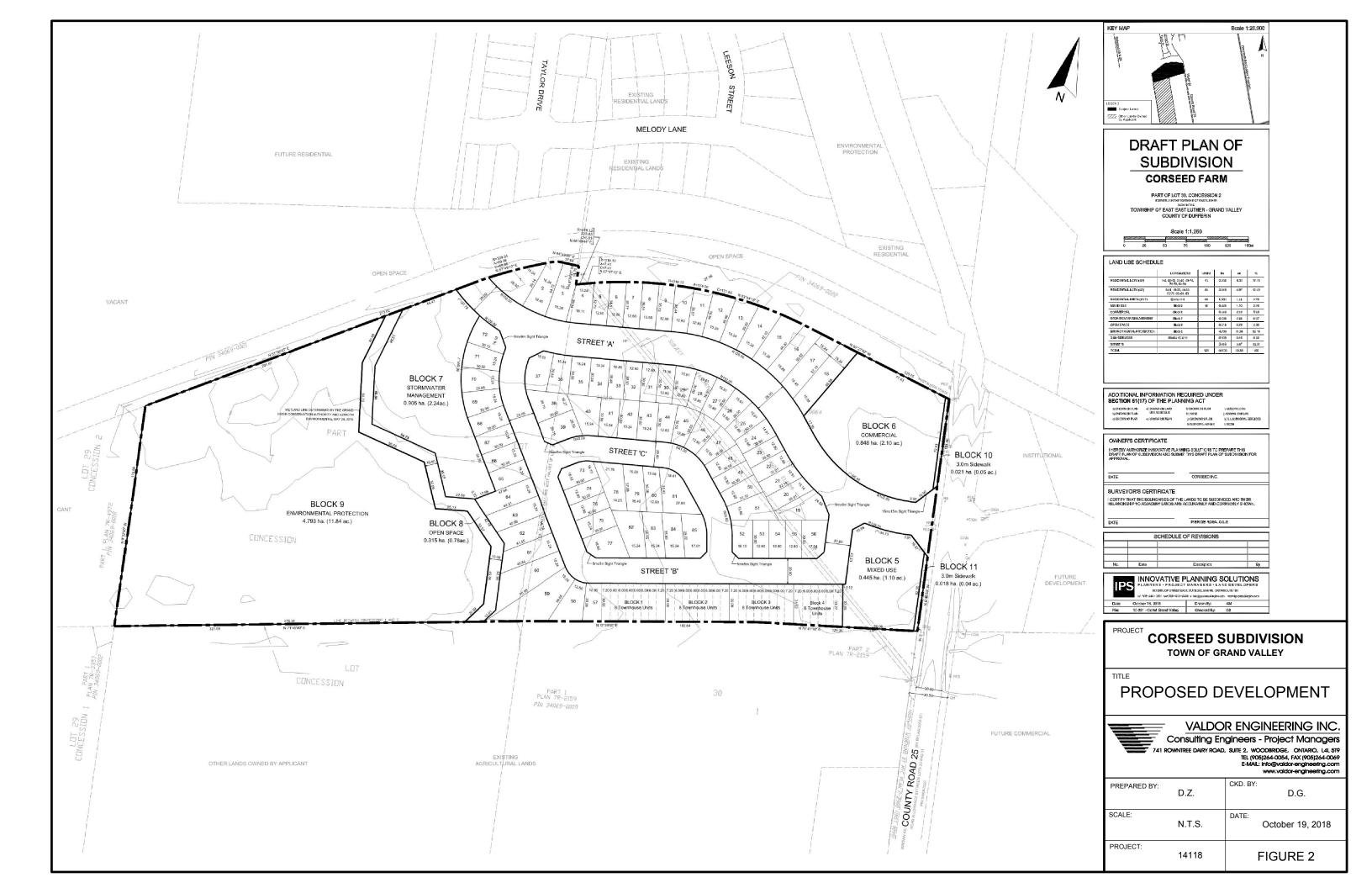

Peter Zourntos, P.Eng., C.Eng. Head of Municipal Design

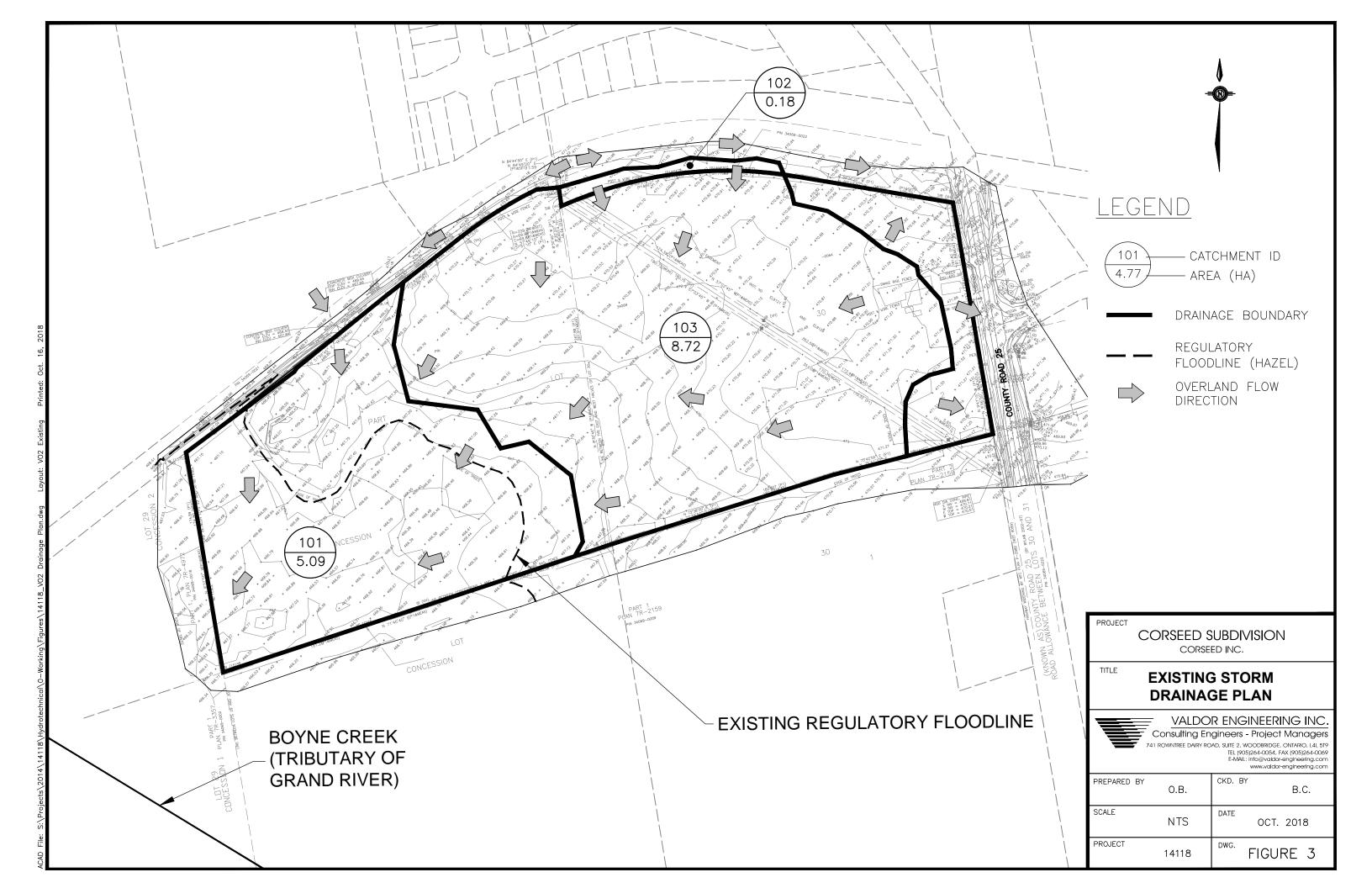
Oliver Beaudin, P.Eng. Project Manager, Water Resources Head of Water Resources

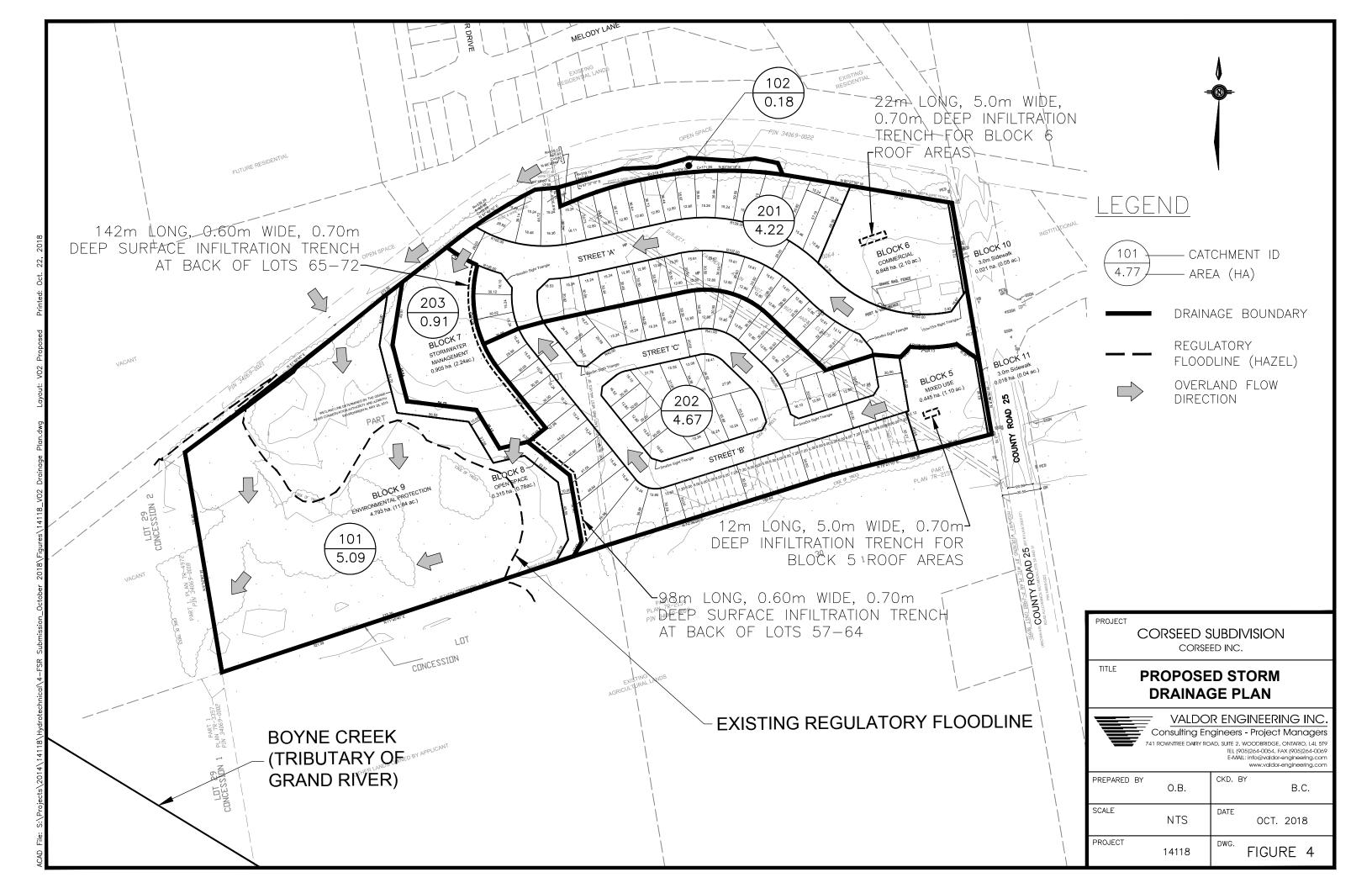
This report was prepared by Valdor Engineering Inc. for the account of Corseed Inc. The comments, recommendations and material in this report reflect Valdor Engineering Inc.'s best judgment in light of the information available to it at the time of preparation. Any use of which a third party makes of this report, or any reliance on, or decisions made based on it, are the responsibility of such third parties. Valdor Engineering Inc. accepts no responsibility whatsoever for any damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

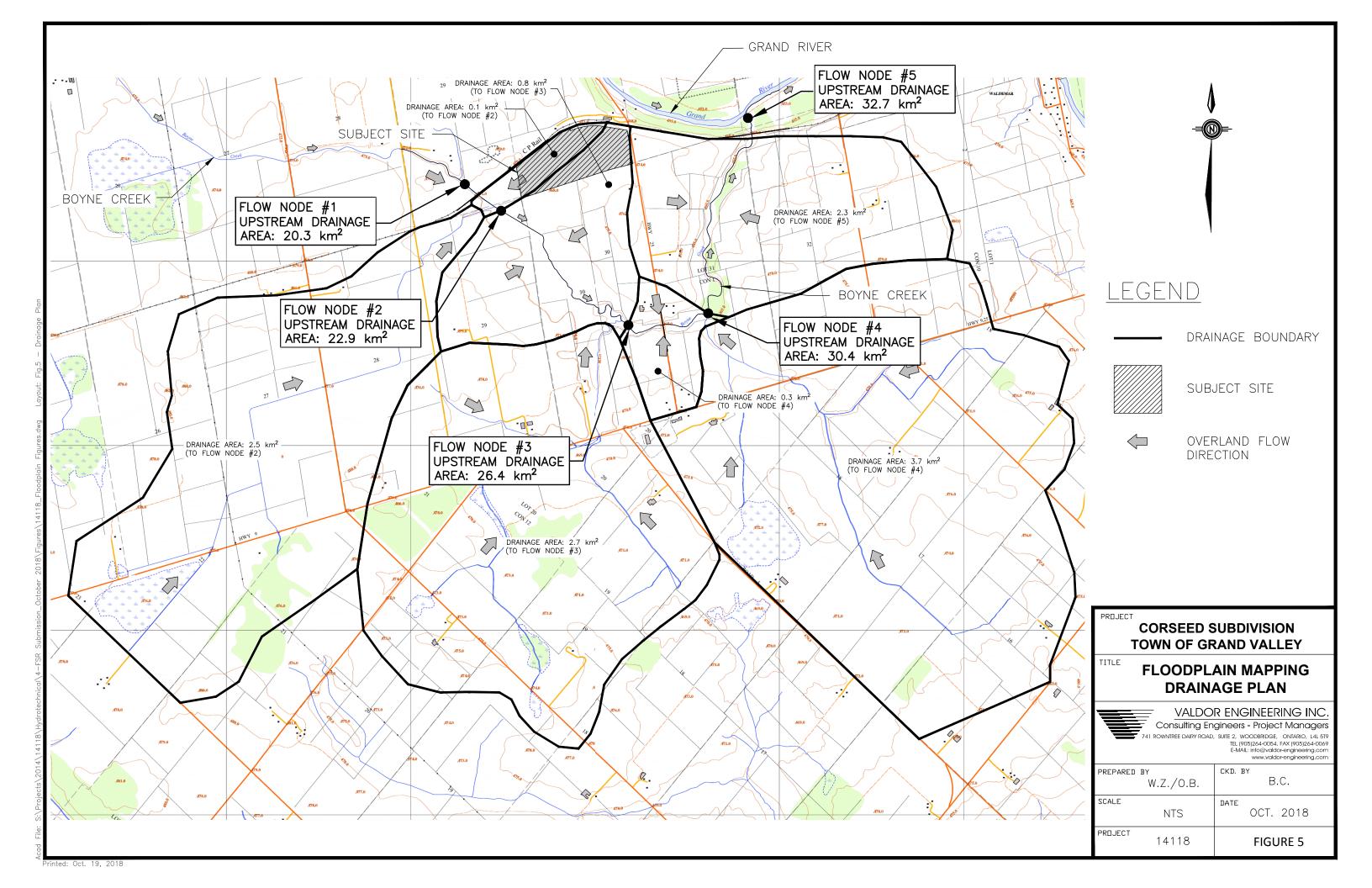
CORSEED SUBDIVISION

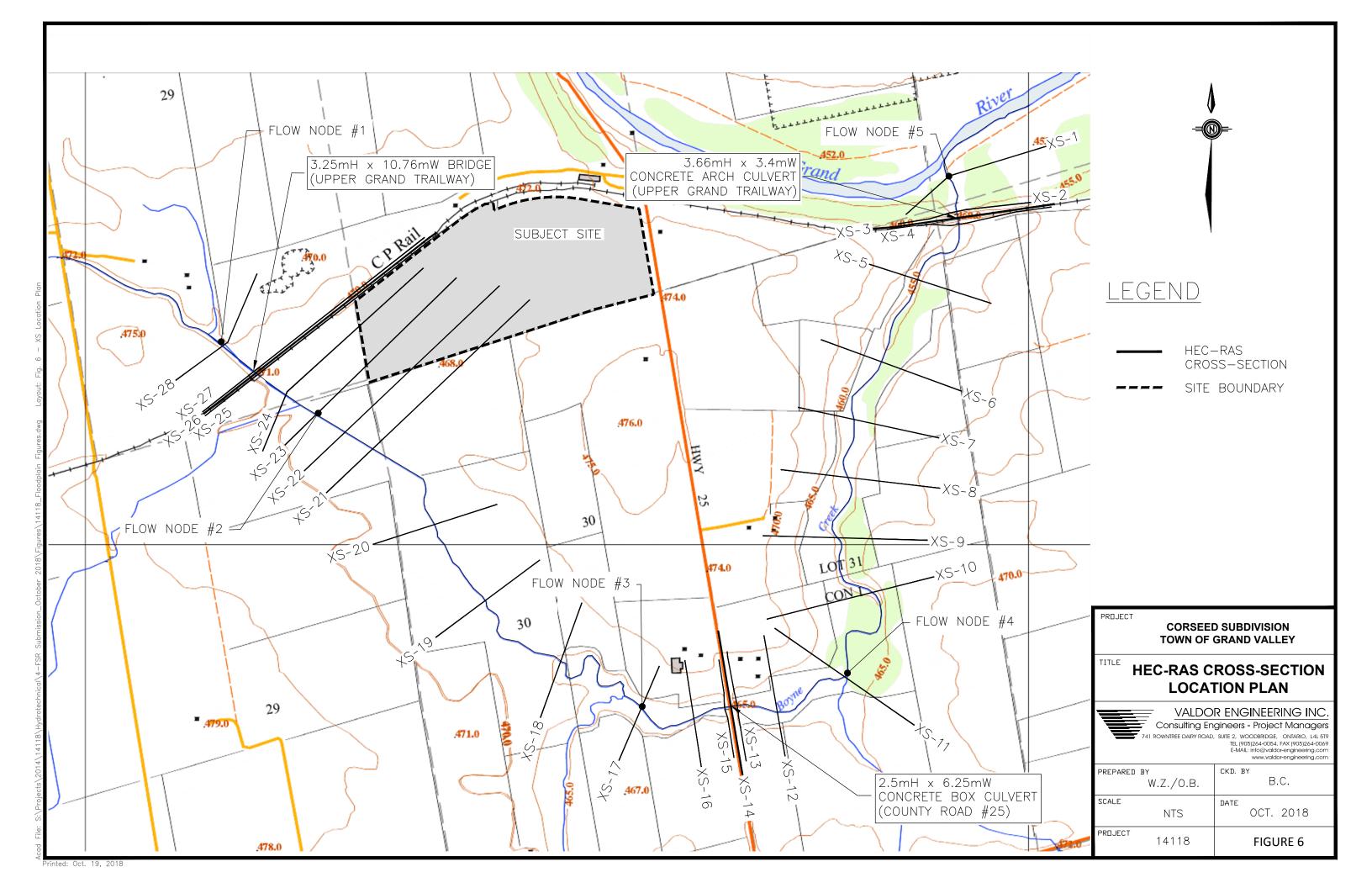
VALDOR ENGINEERING INC.


Consulting Engineers - Project Managers


CONSUITING ETIGITIES - TOJOCT MATAGO...
741 ROWNIREE DAIRY ROAD, SUITE 2. WOODBRIDGE, ONTARIO, L4L 519
TEL (905)264-0054, FAX (905)264-0069
E-MAIL: Info@valdor-engineering.com
www.valdor-engineering.com


LOCATION MAP


SCALE	N.T.S.	PROJECT	14118
DATE	MARCH 2018	DRAWN BY	G.D.


FIGURE 1

APPENDIX "A"

Water Demand Calculations & Details

TABLE A1: DOMESTIC WATER CONSUMPTION DEMAND CALCULATION

Project Name: Corseed Subdivision, Town of Grand Valley

File: 14118

Date: March 2018

Conditions:

Average Day Demand 450 L/person/day

Maximum Day Factor 2.75 Peak Hour Factor 4.13

Consumption Demand:

	Equivalent	Domestic	Maximum	Peak
	Population	Demand	Day	Hour
			Demand	Demand
	(persons)	(L/min)	(L/min)	(L/min)
Residential Units	380	119	327	490
Mixed Use	50	16	43	65
Commercial	22	7	19	28
Total	452	141	388	583

741 Rowntree Dairy Road, Suite 2, Woodbridge, ON L4L 5T9
Tel: 905-264-0054 Fax: 905-264-0069 info@valdor-engineering.com
www.valdor-engineering.com

TABLE A2: REQUIRED FIRE FLOW CALCULATION

In accordance to Water Supply for Public Fire Protection, Fire Underwriters Survey 1999

Project Name: Corseed Subdiv	/ision		Notes: DETACHED DWELLING
File: 14118			Assume:
Date: March 2018			- 3,500 sq.ft total floor area
			- interior unit for max exposure
Type of Construction -	Ordinary Construc	<u>tion</u>	
C	= 1.0		
Total Floor Are	ea: 325	sq.m	
\overline{A}	= 325	sq.m	
(Total Floor Area incl	udes all storeys, but exclud	les basements at lea	st 50 percent below grade)
	220 G		
	$T = 220 \ C \ \sqrt{A}$ T = 3.966	L/min	
_	-,		1 000 L min)
F	4,000	(to nearest	1,000 Lmin)
Occupancy Factor		Charge	
	e: Limited Combusti	•	
, ·		^r _I = -15%	
F'	$f = F \times (1 + f_I)$		
F'	3,400	L/min	
Control Cradit			
Sprinkler Credit		Charge	
NFPA 13 Sprinkler Standar	rd: NO	0%	
Standard Water Suppl		0%	
Fully Supervised Syster	-	0%	
Total Charge to Fire Flor		$r_2 = 0\%$	
· ·	·	-	
Exposure Factor		Charge	
Side 1 - Distance to Building (m		25%	
Side 2 - Distance to Building (m		25%	
Side 3 - Distance to Building (m	•	20%	
Side 4 - Distance to Building (m		20%	
	J	75%	(maximum of 75%)
$F^{\prime\prime}$	$f = F' + F' \times f_2 + F' \times f_2$	f.	
F''		L/min	
1	0,000	L/ 111111	

REQUIRED FIRE FLOW

F'' = 6,000

L/min (to nearest 1,000 L/min)

APPENDIX "B"

Wastewater Calculations & Details

TABLE B1: SEWAGE FLOW CALCULATIONS

Project Name: Corseed Subdivision, Town of Grand Valley

File: 14118
Date: October 2018

Conditions:

Average Daily Flow: 450 L/person/day

Residential Peaking Factor: $K_H = 1 + \frac{14}{4 + \sqrt{P}}$ where K_H = Harmon Peaking Factor (max. 4.0, min. 2.0)

p = population in thousands

Extraneous Flow (*I*): 0.20 L/ha/s. (infiltration)

Design Flow (Q_D): $Q \times K_H + I$

Commercial Flow Rate*: 3.75 L/day/sq.m.Floor Area *average as per the 2008 MOE

Commercial Floor Area**: 2,170.00 sq.m

Guideline, Table 5-3

**assume 25% of lot area

Commercial Flow: 8,137.50 L/day

0.09 L/s

Per capita Rate: 343.00 L/person/day Equivalent Population: 24 People

Consumption Demand:

Ochsumption Bemai	14.						
Land Use	Area	Equivalent	Average	Harmon	Peak	Extraneous	Total
		Population	Daily	Peaking	Daily	Flow	Flow
			Flow	Factor	Flow		
	(ha.)	(persons)	(L/s)		(L/s)	(L/s)	(L/s)
Residential Units	5.14	460	2.40	3.99	9.57	1.03	10.59
Mixed Use Units	0.46	35	0.18	4.00	0.72	0.09	0.81
Commercial units	0.87	24	0.09	4.00	0.38	0.17	0.55
Parks & Open Space	0.32					0.06	0.06
Road Allowance	2.42					0.48	0.48
Total	9.20	519	2.67		10.66	1.84	12.50

APPENDIX "C"

Storm Drainage Details

Consultant:

NOTE: All flows are provided by the VO2 model.

VALDOR ENGINEERING INC.

741 Rowntree Dairy Road, Suite 2, Woodbridge, Ontario, L4L 5T9
Tel: 905-264-0054 Fax: 905-264-0069 info@valdor-engineering.com

Town of Grand Valley

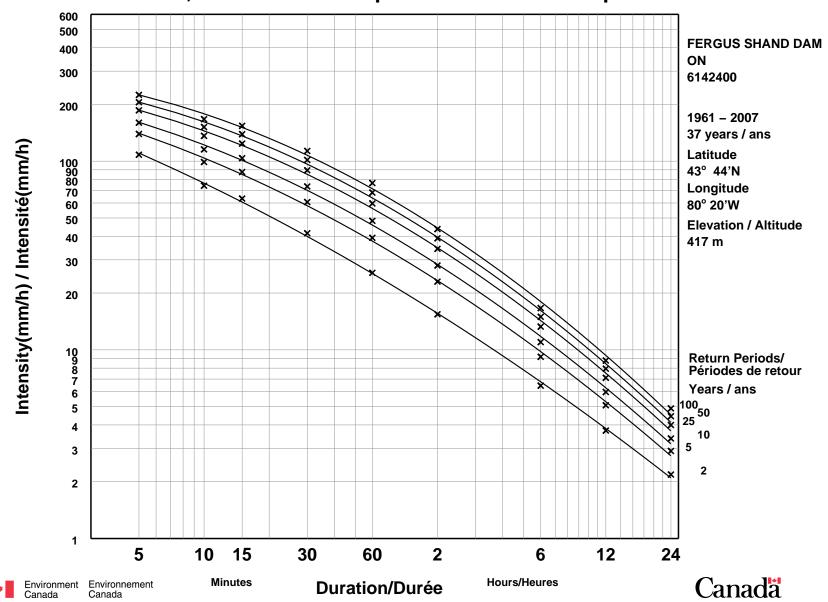
Engineering and Public Works Department STORM SEWER DESIGN SHEET

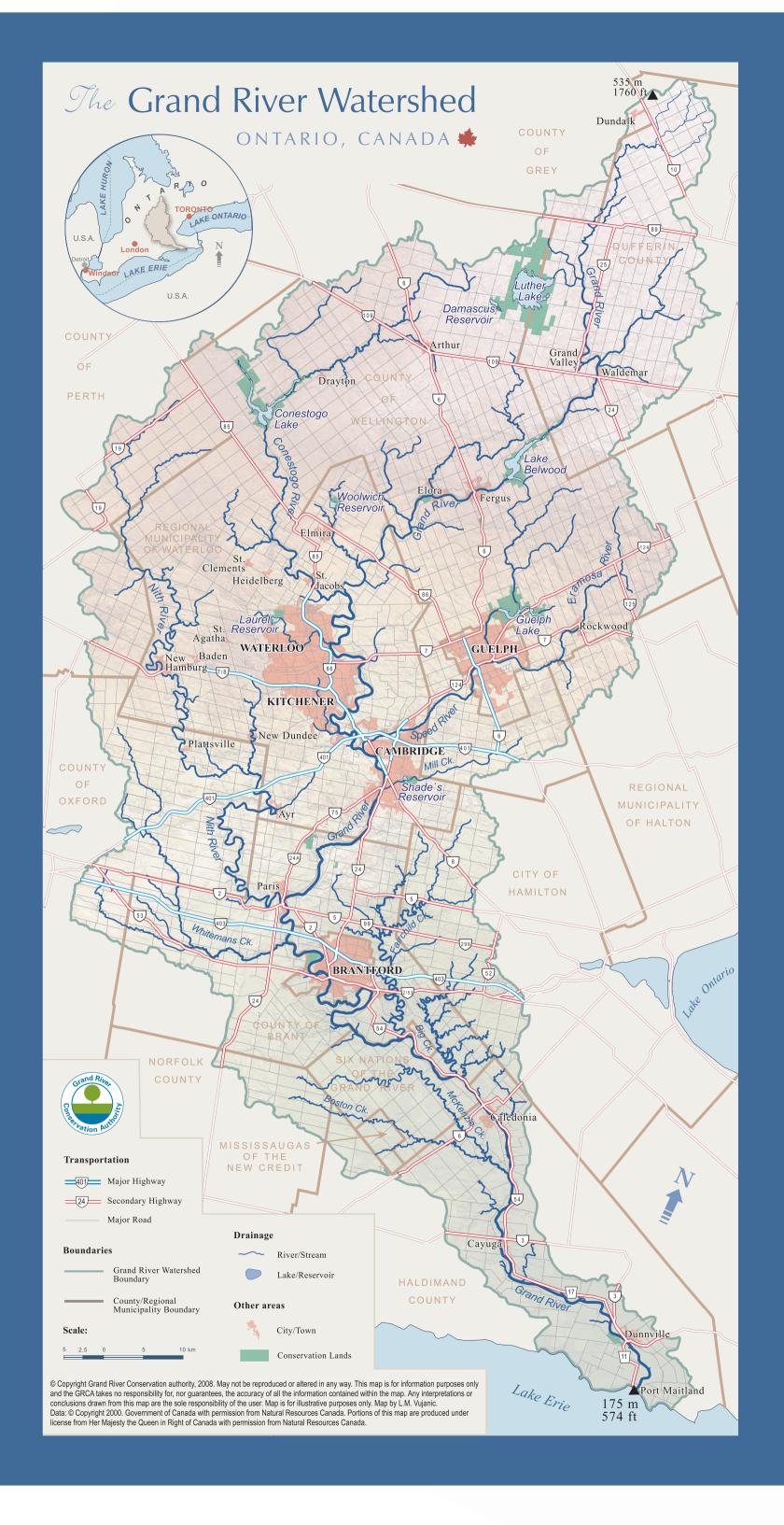
Project Name: Corseed Subdivision Project No: 14118

Design: O. Beaudin, P.Eng. Checked: D. Giugovaz, P.Eng. Approved: P.Zourntos, P.Eng Date: October 2018

Street			Λ	D	AxR	Accum.	Tc	5 Year	Design	Size of	Grade	Nominal	Full Flow	Length	Time in	Total		
Glieet	FROM MH	ТО МН	(ha)	K	AXI	A x R	(min)	I (mm/hr)	Flow Qd (m³/s)	Pipe (mm)	(%)	Capacity Qc (m³/s)	Velocity (m/s)	(m)	Sect. (min)	Time (min)	Qd / Qc	Remarks
MINOR SYSTEM FLOW TO SWM POND FOREBAY INLET Note: Pipe sized to convey the 5-year flow from local streets (Catchment 202: 0.887 cms) and the 10-year flow from the collector road (Catchment 102: 0.010 cms, Catchment 201: 1.029 cms). Total minor system flow is 1.926 cms. Flows obtained from VO2 model results.	CATCHMENTS 102, 201 & 202		9.07						1.926									
	MH 101	HW 1							1.926	1200	0.50	2.757	2.46	58.8	0.40	0.40	70%	

RUNOFF COEFFICIENTS (R)


0.30 : PARK - OPEN SPACES - CEMETARIES 0.45 : SINGLE FAMILY RESIDENTIAL


0.65 : TOWN HOUSES

0.50 : APARTMENTS & MEDIUM DENSITY

		Town of Grand Valley
		Engineering and Public Works Department

Short Duration Rainfall Intensity-Duration-Frequency Data Données sur l'intensité, la durée et la fréquence des chutes de pluie de courte durée

APPENDIX "D"

Stormwater Management Calculations

Project: Corseed Subdivision

File: 14118

Date: October 2018

	Table D.1: Existing VO2 Model Parameters											
Subcatchment	Area (ha)	DT (min)	CN Number	IA (mm)	Tp (hr)							
101	5.09	5	65	8.0	0.42							
102	0.18	5	65	8.0	0.06							
103	8.72	5	77	7.5	0.50							
Total	13.99											

Project: Corseed Subdivision

File: 14118

Date: October 2018

	Table D.2: Proposed VO2 Model Parameters												
Subcatchment	Area (ha)	DT (min)	ТІМР	XIMP	CN	IA (mm)							
101	5.09	5	-	-	65	8.0							
102	0.18	5	-	-	65	8.0							
201	4.22	5	0.70	0.55	68	5.0							
202	4.67	5	0.70	0.55	68	5.0							
203	0.91	5	0.50	0.50	68	5.0							
Total	15.07												

Project: Corseed Subdivision

File: 14118 Date: October 2018

Watershed	Area	Land Use and Lan	d Cover	CN	Area Weighted	IA (mm)	Area Weighted	C-Value	Area Weighted				
w atersnea	(ha)	Туре	Area (ha)	CN	CN	IA (IIIII)	IA (mm)	C-value	C-Value				
		Row Crops (HSG 'BC')	0.000	85		7		0.35					
101	5.09	Meadow (HSG 'BC')	5.090	65	65	8	8.0	0.28	0.280				
		Forest (HSG 'BC')	0.000	63		10		0.25					
		Row Crops (HSG 'BC')	0.000	85		7		0.35					
102	0.18	Meadow (HSG 'BC')	0.180	65	65	8	8.0	0.28	0.280				
		Forest (HSG 'BC')	0.000	63		10		0.25					
		Row Crops (HSG 'BC')	5.497	85		7		0.35					
103	8.72	Meadow (HSG 'BC')	2.591	65	77	8	7.5	0.28	0.322				
		Forest (HSG 'BC')	0.632	63		10		0.25					

Project: Corseed Subdivision

File: 14118

Date: October 2018

	Table D.4: Calculation of Time to Peak											
Subcatchment	C Runoff Coefficient (Area Weighted)	L(m) Catchment Length	Highest Elevation (m)	Lowest Elevation (m)	S(%) Catchment Slope	T _c (min)	$T_{p} \\ \text{(hr)}$					
101	0.28	200	468.21	466.21	1.00	37.9	0.42					
102	0.28	11	471.55	470.98	5.00	5.3	0.06					
103	0.32	365	471.61	467.05	1.25	45.1	0.50					

Note:

$$T_c = \frac{3.26 \times (1.1 - C) \times L_c^{0.5}}{S_w^{0.33}}$$
 and $T_P = 0.67 T_c$

Table D.5 SWM POND STAGE-STORAGE TABLE

Project Name: Corseed Subdivision **Municipality:** Town of Grand Valley

Project No.: 14118

Date: October 2018

		Stage Sto	rage Curve				Outlet Structure						
Elevation	Sec Area	Avg Area	Sec Volume	Cumulative	Volume		Stage			¹ Discharge			
				Volume	Above NWL		Active			m³/s			
(m)	(m ²)	(m ²)	(m³)	(m^3)	(m³)		(m)	Orifice #1	Orifi	ce #2	Spillway	Total	
									(Weir Flow)	(Orifice Flow)			Comments:
						Invert Elevation (m)		467.30	467.80	467.80	468.50	Flow	
						Diameter (mm)/Length (m)		100	1.30	1.30	30.00		
						Height (m)		-	0.20	0.20			
						Orifice Area (m²)		0.0079	0.2600	0.2600	-		
										ı			Weir Equation: Q=1.837xLxH ^{1.5}
Forebay Belo	ow NWL									ļ l			Orifice Eq'n: $Q = 0.6A(2gH)^{0.5}$
465.30	55	-	-	0		Bottom of Forebay				!			Spillway Design: Q=1.67xLxH ^{1.5}
466.30	393	224	224	224		-				i			
467.30	886	640	640	864		NWL				!			
Main Cell Be	low NWL									[
465.30	566	-	-	0		Bottom of Main Cell				<u> </u>			
466.30	1,162	864	864	864		-				!			
467.30	1,989	1,576	1,576	2,440		NWL				 			
Forebay & M	lain Cell Abo	ove NWL								<u> </u>			
467.30	2,875	-	-	3,303	0	NWL	0.00	0.000		i		0.000	Permanent Pool Provided
467.60	3,364	3,119	936	4,239	936		0.30	0.010		i l		0.010	
467.65	3,445	3,404	170	4,409	1,106		0.35	0.011		i		0.011	
467.70	3,526	3,486	174	4,583	1,280		0.40	0.012		<u> </u>		0.012	
467.75	3,608	3,567	178	4,762	1,459		0.45	0.013		<u> </u>		0.013	
467.80	3,689	3,648	182	4,944	1,641	Extended Detention	0.50	0.014	0.000	-		0.014	Extended Detention Provided
467.85	3,771	3,730	186	5,131	1,828		0.55	0.015	0.024	<u> </u>		0.039	
467.90	3,852	3,811	191	5,321	2,018		0.60	0.015	0.069	! -		0.084	
468.00	4,028	3,940	394	5,715	2,412		0.70	0.017	0.194	ļ -		0.211	
468.10	4,205	4,116	412	6,127	2,824		0.80	0.018	-	0.309		0.327	
468.30	4,557	4,381	876	7,003	3,700		1.00	0.020	-	0.437		0.457	
468.50	4,870	4,713	943	7,946	4,643	Spillway	1.20	0.022	-	0.535	0.000	0.558	100-year Storage Provided
468.60	5,026	4,948	495	8,440	5,137		1.30	0.023	-	0.578	1.584	2.186	
468.70	5,184	5,105	510	8,951	5,648		1.40	0.024	-	0.618	4.481	5.123	
469.00	5,658	5,421	1,626	10,577	7,274	Top of Berm	1.70	0.027	-	0.725	17.713	18.465	Top of Berm
										<u> </u>			

Corseed Subdivision SWM Facility (Wet Pond)

Town of Grand Valley

Project No.: 14118

VALDOR ENGINEERING INC.

741 Rowntree Dairy Road, Suite 2, Woodbridge, Ontario. L4L 5T9 Tel: 905-264-0054 Fax: 905-264-0069 www.valdor-engineering.com

TABLE D.6: SWM FACILITY SIZING FOR WATER QUALITY CONTROL

Source: Stormwater Management Planning and Design Manual (Table 3.2), Ministry of the Environment, Ontario, March 2003

Protection Level	SWMP Type	Storage Volume (m³/ha) for Impervious Level							
		35%	55%	70%	85%				
Level 1	Infiltration	25	30	35	40				
	Wetlands ²	80	105	120	140				
	Wet Pond ²	140	190	225	250				
	Hybrid Wet Pond/Wetland ⁴	110	150	175	195				
Level 2	Infiltration	20	20	25	30				
	Wetlands	60	70	80	90				
	Wet Pond	90	110	130	150				
	Hybrid Wet Pond/Wetland	75	90	105	120				
Level 3	Infiltration	20	20	20	20				
	Wetlands	60	60	60	60				
	Wet Pond	60	75	85	95				
	Hybrid Wet Pond/Wetland	60	70	75	80				
	Dry Pond	90	150	200	240				

^{1.} Table 3.2 was based on specific design parameters (depth, length to width ratio) for each type of end-of-pipe stormwater management facility. The values of these parameters are provided in Appendix I of the Manual. All values in Table 4.1 are based on a 24 hour detention.

^{3.} For hybrid ponds, 50% to 60% of the permanent pool volume shall be contained in deeper portions of the facility.

PERMANENT POOL CALCULATOR				
SWMP Type:	WET POND	(IN - infiltration, WET - wetlands, WP - wet pond HYB - hybrid wet pond/wetland, DP - dry pond)		
Protection Level:	1	(1 - 80% TSS, 2 - 70% TSS, 3 - 60% TSS)		
Average Imperviousness:	70.0	%		
Volume Level:	185.0 r	m ³ /ha Excluding Extended Detention		
Area:	9.070 ł	ha		
Total Required Volume:	1,678 I	m^3		

^{2.} For wetlands, wet ponds and hybrid ponds, all of the storage, except $40~\text{m}^3$ /ha, in Table 3.2 represents the permanent pool volume. The $40~\text{m}^3$ /ha represents the extended detention storage.

Project: Corseed Subdivision

File: 14118

Date: October 2018

Table D.7: Extended Detention Requirements

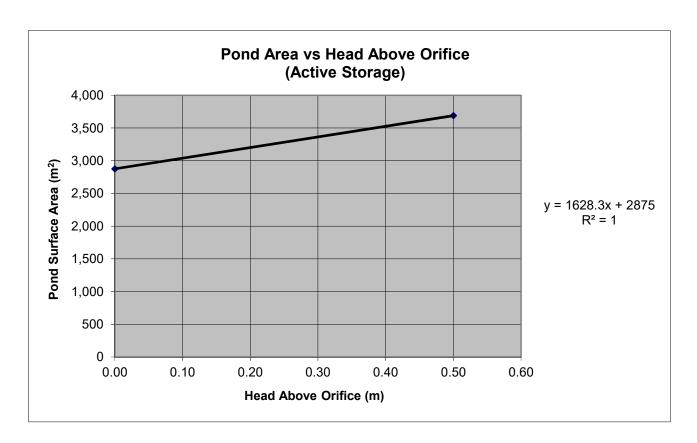
Event	Area (ha)	R.V. (mm)	Required Ext. Det. Volume (m³)	Provided Ext. Det. Volume (m³)
25mm 4-hour Chicago Storm	9.98	14.88	1,485	1,641

Table D.8: SWM Facility Operation - Extended Detention Erosion Control Drawdown Time

Project Name: Corseed Subdivision Municipality: Town of Grand Valley

Project No.: 14118

Date: October 2018


Extended Detention - SWM Pond

Bittenata B ttent	on STITIONS
Orifice Sizing	
Orifice Size	100 mm
Orifice Invert	467.30 m
Orifice Area	0.007854 sq. m
¹ EDL _{erosion}	467.80 m
NWL	467.30 m
C_2	1628.3
C_3	2875.0
h	0.4500 m
Drawdown Time	53.8 hr

$$y = mx + b$$

$$C_2 = m$$

$$C_3 = b$$

Project: Corseed Subdivision

File: 14118

Date: October 2018

Table D.9: Critical Storm Analysis

Storm Distribution	Theoretical 100-year Storage Volume Required (m³)	Note
6-hour SCS	3,626	
12-hour SCS	3,241	
24-hour SCS	3,000	
1-hour AES	3,902	Critical Storm
6-hour AES	3,484	
12-hour AES	3,044	
24-hour AES	2,905	
3-hour Chicago	3,772	

SWM Pond: Forebay Weir

4.00 m

Project	Description	

Solve For Discharge

Input Data

Headwater Elevation		467.80	m
Crest Elevation		467.30	m
Tailwater Elevation		467.30	m
Crest Surface Type	Gravel		
Crest Breadth		6.00	m

Results

Crest Length

Discharge	2.294	m³/s
Headwater Height Above Crest	0.50	m
Tailwater Height Above Crest	0.00	m
Weir Coefficient	1.62	SI
Submergence Factor	1.00	
Adjusted Weir Coefficient	1.62	SI
Flow Area	2.00	m²
Velocity	1.15	m/s
Wetted Perimeter	5.00	m
Top Width	4.00	m

Culvert Calculator Report SWM Pond: Bottom Draw Outlet Pipe

Solve For: Discharge

Culvert Summary					
Allowable HW Elevation	467.80	m	Headwater Depth/Height	6.56	
Computed Headwater Elevation	467.80	m	Discharge	0.0798	m³/s
Inlet Control HW Elev.	467.64	m	Tailwater Elevation	467.30	m
Outlet Control HW Elev.	467.80	m	Control Type	Outlet Control	
Grades					
Upstream Invert	465.80	m	Downstream Invert	467.30	m
Length	31.10	m	Constructed Slope	-0.048232	m/m
Hydraulic Profile					
Profile CompositeA2Pro	essureProfile		Depth, Downstream	0.22	m
Slope Type	Adverse		Normal Depth	0.00	m
Flow Regime	Subcritical		Critical Depth	0.22	m
Velocity Downstream	1.42	m/s	Critical Slope	0.007087	m/m
Section					
Section Shape	Circular		Mannings Coefficient	0.012	
Section Materiabrrugated HDPE (Sm	ooth Interior)		Span	0.30	m
Section Size	300 mm		Rise	0.30	m
Number Sections	1				
Outlet Control Properties					
Outlet Control HW Elev.	467.80	m	Upstream Velocity Head	0.06	m
Ke	0.20		Entrance Loss	0.01	m
Inlet Control Properties					
Inlet Control HW Elev.	467.64	m	Flow Control	Transition	
Inlet Type Beveled ring,	33.7° bevels		Area Full	0.1	m²
K	0.00180		HDS 5 Chart	3	
M	2.50000		HDS 5 Scale	В	
С	0.02430		Equation Form	1	
Υ	0.83000				

Culvert Calculator Report SWM Pond: Quantity Outlet Pipe - 100yr Controlled Flow

Solve For: Headwater Elevation

Culvert Summary					
Allowable HW Elevation	468.50	m	Headwater Depth/Height	0.61	
Computed Headwater Elevation	n 467.45	m	Discharge	0.5530	m³/s
Inlet Control HW Elev.	467.41	m	Tailwater Elevation	467.35	m
Outlet Control HW Elev.	467.45	m	Control Type	Outlet Control	
Grades					
Upstream Invert	467.08	m	Downstream Invert	467.00	m
Length	15.60	m	Constructed Slope	0.005128	m/m
Hydraulic Profile					
Profile	S1		Depth, Downstream	0.35	m
Slope Type	Steep		Normal Depth	0.19	m
Flow Regime	Subcritical		Critical Depth	0.21	m
Velocity Downstream	0.88	m/s	Critical Slope	0.003684	m/m
Section					
Section Shape	Box		Mannings Coefficient	0.013	
Section Material	Concrete		Span	1.80	m
Section Size	1800 x 600 mm		Rise	0.60	m
Number Sections	1				
Outlet Control Properties					
Outlet Control HW Elev.	467.45	m	Upstream Velocity Head	0.07	m
Ke	0.50		Entrance Loss	0.04	m
Inlet Control Properties					
Inlet Control HW Elev.	467.41	m	Flow Control	Unsubmerged	
Inlet Type 90° hea	dwall w 45° bevels		Area Full	1.1	m²
K	0.49500		HDS 5 Chart	10	
M	0.66700		HDS 5 Scale	2	
C	0.03140		Equation Form	2	
Υ	0.82000				

SWM Pond: Level Spreader - 100yr Controlled Flow

10.00 m

Dro	inat	\Box	a a ri	ntin	_
Pro	CCL	DE	SCH	μιιυ	ш

Solve For Headwater Elevation

Input Data	а
------------	---

Discharge		0.553	m³/s
Crest Elevation		467.25	m
Tailwater Elevation		467.25	m
Crest Surface Type	Paved		
Crest Breadth		0.30	m

Results

Crest Length

Headwater Elevation	467.35	m
Headwater Height Above Crest	0.10	m
Tailwater Height Above Crest	0.00	m
Weir Coefficient	1.70	SI
Submergence Factor	1.00	
Adjusted Weir Coefficient	1.70	SI
Flow Area	1.02	m²
Velocity	0.54	m/s
Wetted Perimeter	10.20	m
Top Width	10.00	m

SWM Pond: Emergency Spillway - 100yr Uncontrolled Flow

Pro	iect	Descri	iption
	,000		

Headwater Elevation Solve For

In	ดน	t D	ata

Discharge		4.098	m³/s
Crest Elevation		468.50	m
Tailwater Elevation		468.50	m
Crest Surface Type	Gravel		
Crest Breadth		8.00	m
Crest Length		30.00	m

Results

Headwater Elevation	468.70	m
Headwater Height Above Crest	0.20	m
Tailwater Height Above Crest	0.00	m
Weir Coefficient	1.51	SI
Submergence Factor	1.00	
Adjusted Weir Coefficient	1.51	SI
Flow Area	6.04	m²
Velocity	0.68	m/s
Wetted Perimeter	30.40	m
Top Width	30.00	m

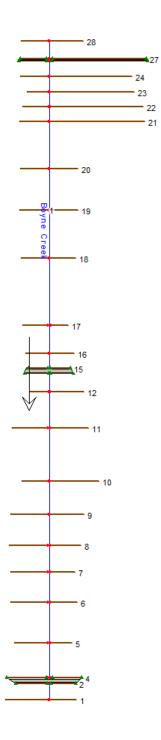


Figure D.1: HEC-RAS Model Schematic

Project: Corseed Subdivision

File: 14118

Date: March 2018

Table D.10: HEC-RAS FLOW DATA

Boyne Creek drainage area upstream of Grand River (km²): 32.7

Boyne Creek Regional flow at Grand River (cms): 102

Transposition of Flood Discharges Method (MTO Drainage Management Manual, 1997, Eq. 8.31):

$$Q_2 = Q_1 \left(\frac{A_2}{A_1} \right)^{0.75}$$

Where:

Q1 = known peak discharge

Q2 = unknown peak discharge

A₁ = known basin area

 A_2 = unknown basin area

Regional flow at flow nodes as per the Transposition of Flood Discharges Method:

Flow Node	¹HEC-RAS XS	Upstream Drainage Area (km²)	Regional Flow (cms)
1	-	20.3	71.3
2	28	22.9	78.1
3	23	26.4	86.9
4	17	30.4	96.6
5	11	32.7	102.0

Notes:

1-The flow at each flow node is applied to the HEC-RAS cross-sections upstream of that flow node.

Project: Corseed Subdivision

File: 14118 Date: March 2018

Table D.11: EXISTING CONDITIONS HEC-RAS OUTPUT

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude # Chl
			(m3/s)	(m)	(m)	(m)	(m)	(m/m)	(m/s)	(m2)	(m)	
	1 28	Regulatory	78.10	465.66	469.45		469.47	0.00	1.18	211.82	150.29	0.2
	1 27	Regulatory	78.10	465.29	469.45	468.39	469.45	0.00	0.48	692.27	564.91	0.08
	1 26		Bridge									
		Regulatory	78.10		468.02	468.02	468.18					
		Regulatory	78.10		467.33		467.38				362.08	
		Regulatory	86.90		467.05	467.05	467.18		2.78			
		Regulatory	86.90		466.88		466.90			273.68	466.95	
		Regulatory	86.90		466.85		466.86				_	
	1 20	Regulatory	86.90		466.66		466.71	0.00	1.83	182.88	196.87	0.34
	1 19	Regulatory	86.90		465.58	465.58	466.17	0.01	4.29			
		Regulatory	86.90		465.23		465.31	0.00		106.78	69.94	
		Regulatory	96.60		465.01		465.09				82.27	
		Regulatory	96.60		464.86		464.98				57.87	
		Regulatory	96.60	459.58	464.80	461.69	464.93	0.00	1.64	77.59	124.97	0.23
	1 14		Culvert									
		Regulatory	96.60		462.50	462.35	463.71	0.01	4.90			
		Regulatory	96.60		462.55		462.79			79.38		
		Regulatory	102.00		461.52	461.52	462.00		3.51	57.13		
		Regulatory	102.00		460.79		460.92	0.00			105.06	
		Regulatory	102.00	457.24	459.64	459.63	460.23		4.25		47.27	
	1 8	Regulatory	102.00		459.84		459.89			163.96		
	1 7	Regulatory	102.00		459.81		459.84		1.15		102.82	
		Regulatory	102.00		459.80		459.82	0.00			138.02	
		Regulatory	102.00		459.80		459.81	0.00			206.56	
	1 4	Regulatory	102.00	450.67	459.77	452.78	459.80	0.00	0.86	301.77	342.75	0.09
	1 3		Culvert									
	1 2	Regulatory	102.00		454.10		454.38		2.60		95.50	
	1 1	Regulatory	102.00	449.23	454.23	452.29	454.23	0.00	0.50	699.43	308.10	0.07

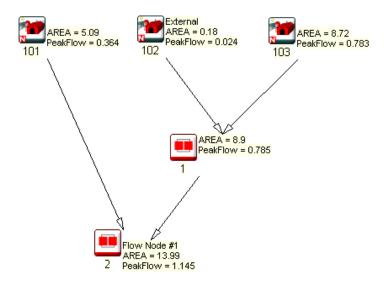


Figure D.2: VO2 Model Schematic – Existing Conditions

```
_____
-----
     V V I SSSSS U U A L
     v v
               SS U U A A L
             SS U U AAAAA L
     V V I
     v v
                SS U U A A L
           I SSSSS UUUUU A A LLLLL
     OOO TTTTT TTTTT H H Y Y M M OOO TM, Version 2.0
     0 0 T T H H Y Y MM MM 0 0 0 Licensed To: Valdor Engineering
                T H H Y M M 000
                                                    VO2-0156
Developed and Distributed by Greenland International Consulting Inc.
Copyright 1996, 2001 Schaeffer & Associates Ltd.
All rights reserved.
              ***** DETAILED OUTPUT ****
 Input filename: C:\Program Files\Visual OTTHYMO v2.0\voin.dat
 Output filename: S:\Projects\2014\14118\Hydrotechnical\0-
Working\VO2\VO2\14118\14118_Existing.out
 Summary filename: S:\Projects\2014\14118\Hydrotechnical\0-
Working\VO2\VO2\14118\14118_Existing.sum
DATE: 10/16/2018
                                TIME: 2:13:10 PM
USER:
COMMENTS: Existing Conditions VO2 Model Output
 *******
 ** SIMULATION NUMBER: 2 ** 2-year 1-hour AES
  READ STORM
                  Filename: S:\Projects\2014\14118\Hydrotechnical\
                         3-FSR Submission_March 2018\VO2\VO2\Storms\
                         AES_1H_2Y.STM
Ptotal= 25.60 mm
                  Comments: 2yr/1hr Fergus Shand Dam 2007 (AES Curve
            TIME
                        TIME
                              RAIN
                                     TIME
                                                 TIME
                                                       RAIN
                  RAIN
                                          RAIN
                              mm/hr
                                         mm/hr
                  mm/hr
                         hrs
                                     hrs
                                                 hrs mm/hr
             hrs
             .08
                   .00
                         .42
                              46.08
                                     .75
                                          24.58
                                                 1.08 3.07
             .17
                  3.07
                         .50
                              86.02
                                     .83
                                         15.36
                  9.22
                         . 58
                              46.08
                                      . 92
                                           9.22
              . 25
             .33 24.58
                        .67 36.86
                                    1.00
                                          3.07
______
 CALTB
 NASHYD (0103)
                Area
                      (ha)= 8.72 Curve Number (CN)= 77.0
ID= 1 DT= 5.0 min
                Ia
                       (mm) = 7.50
                                  # of Linear Res.(N)= 3.00
                U.H. Tp(hrs)=
                             .50
   Unit Hyd Qpeak (cms)=
   PEAK FLOW
              (cms)= .084 (i)
```

```
TIME TO PEAK (hrs)= 1.167
   RUNOFF VOLUME (mm) = 3.486
TOTAL RAINFALL (mm) = 25.601
    RUNOFF COEFFICIENT = .136
    (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
         (0102)
                  Area (ha)=
                                .18 Curve Number (CN) = 65.0
 NASHYD
ID= 1 DT= 5.0 min | Ia
                        (mm)= 8.00 # of Linear Res.(N)= 3.00
----- U.H. Tp(hrs)=
                                .06
   Unit Hyd Opeak (cms)=
                         . 115
    PEAK FLOW
                         .002 (i)
                 (cms)=
    TIME TO PEAK (hrs)=
                         . 667
   RUNOFF VOLUME (mm) = 1.720
TOTAL RAINFALL (mm) = 25.601
    RUNOFF COEFFICIENT =
    (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
 ADD HYD (0001)
1 + 2 = 3
                       (ha)
                              (cms)
                                     (hrs)
                                              (mm)
      ID1= 1 (0103):
                       8.72
                              .084
                                     1.17
                                             3.49
      + ID2= 2 (0102):
                                            1.72
                       .18
                              .002
                                      .67
        _____
       ID = 3 (0001): 8.90 .084 1.17
                                             3.45
   NOTE: PEAK FLOWS DO NOT INCLIDE BASEFLOWS IF ANY
_____
 CALTR
 NASHYD
        (0101)
                  Area (ha)= 5.09 Curve Number (CN)= 65.0
|ID= 1 DT= 5.0 min | Ia (mm)= 8.00 # of Linear Res.(N)= 3.00
----- U.H. Tp(hrs)= .42
   Unit Hyd Qpeak (cms)=
    PEAK FLOW
                         .032 (i)
                 (cms)=
    TIME TO PEAK (hrs)= 1.083
   RUNOFF VOLUME
                 (mm) = 2.006
   TOTAL RAINFALL (mm) = 25.601
   RUNOFF COEFFICIENT = .078
   (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
| ADD HYD (0002) |
  1 + 2 = 3
                       AREA
                              OPEAK
                                     TPEAK
                                             R V
                       (ha)
                              (cms)
                                      (hrs)
                                              (mm)
       ID1= 1 (0001):
                       8.90
                              .084
                                      1.17
                                             3.45
      + ID2= 2 (0101):
                       5.09
                              .032
                                      1.08
                                             2.01
```

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

ID = 3 (0002): 13.99

```
*******
 ** SIMULATION NUMBER: 3 ** 5-year 1-hour AES
 *******
                  Filename: S:\Projects\2014\14118\Hydrotechnical\
  READ STORM
                           3-FSR Submission_March 2018\VO2\VO2\Storms\
                            AES 1H 5Y.STM
Ptotal= 39.20 mm
                  Comments: 5yr/1hr Fergus Shand Dam 2007 (AES Curve
             TIME RAIN
                           TIME
                                 RAIN TIME RAIN
                                                      TIME RAIN
              hrs mm/hr
                            hrs mm/hr
                                         hrs mm/hr
                                                       hrs mm/hr
               .08
                     .00
                            .42 70.56
                                          .75 37.63
                                                      1.08 4.70
               .17
                    4.70
                            .50 131.71
                                         .83 23.52
                    14.11
                            .58
                                 70.56
                                          .92
                                              14.11
               .33 37.63 .67 56.45 1.00
                                              4.70
 CALIB
| NASHYD (0103) | Area (ha)= 8.72 Curve Number (CN)= 77.0 | ID= 1 DT= 5.0 min | Ia (mm)= 7.50 # of Linear Res.(N)= 3.00
----- U.H. Tp(hrs)= .50
   Unit Hyd Qpeak (cms)= .666
   PEAK FLOW
                 (cms)=
                         .222 (i)
   TIME TO PEAK (hrs)= 1.083
   RUNOFF VOLUME (mm) = 9.340
   TOTAL RAINFALL (mm)= 39.198
   RUNOFF COEFFICIENT = .238
   (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
| NASHYD (0102) | Area (ha)= .18 Curve Number (CN)= 65.0 | ID= 1 DT= 5.0 min | Ia (mm)= 8.00 # of Linear Res.(N)= 3.00
----- U.H. Tp(hrs)= .06
   Unit Hyd Qpeak (cms)= .115
   PEAK FLOW
                 (cms)= .006 (i)
   TIME TO PEAK (hrs)= .667
   RUNOFF VOLUME (mm) = 4.972
   TOTAL RAINFALL (mm) = 39.198
   RUNOFF COEFFICIENT = .127
   (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
ADD HYD (0001)
 1 + 2 = 3
                        AREA
                                      TPEAK
                                               R.V.
                        (ha)
                             (cms)
                                      (hrs)
                                               (mm)
        ID1= 1 (0103):
                        8.72
                               .222
                                      1.08
                                              9.34
      + ID2= 2 (0102):
                        .18
                              .006
                                      .67
                                              4.97
        _____
       ID = 3 (0001): 8.90 .223 1.08 9.25
   NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
```

```
| CALTE
 NASHYD (0101)
                Area
                      (ha)= 5.09 Curve Number (CN)= 65.0
|ID= 1 DT= 5.0 min |
                Ia
                       (mm)= 8.00 # of Linear Res.(N)= 3.00
----- U.H. Tp(hrs)= .42
   Unit Hyd Qpeak (cms)=
   PEAK FLOW
               (cms) = .092 (i)
   TIME TO PEAK
              (hrs) = 1.083
   RUNOFF VOLUME (mm) = 5.794
   TOTAL RAINFALL (mm) = 39.198
   RUNOFF COEFFICIENT = .148
   (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
| ADD HYD (0002) |
 1 + 2 = 3
                     AREA OPEAK
                                 TPEAK
                                        R V
                     (ha) (cms)
                                  (hrs)
                                         (mm)
      ID1= 1 (0001):
                     8.90
                           . 223
                                  1.08
                                         9.25
     + ID2= 2 (0101): 5.09
                          .092
                                1.08
                                       5.79
       _____
       ID = 3 (0002): 13.99 .315 1.08
   NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
 *******
 ** SIMULATION NUMBER: 4 ** 10-year 1-hour AES
 *******
  READ STORM
                 Filename: S:\Projects\2014\14118\Hydrotechnical\
                         3-FSR Submission_March 2018\VO2\VO2\Storms\
                         AES_1H_10Y.STM
 Ptotal= 48.30 mm | Comments: 10yr/lhr Fergus Shand Dam 2007 (AES Curv
                        TIME RAIN | TIME RAIN | TIME RAIN
                 mm/hr
                         hrs mm/hr
                                    hrs mm/hr
                                                 hrs mm/hr
             hrs
                         .42 86.94
                                    .75 46.37
             .08
                  .00
                                                1.08 5.80
             .17
                  5.80
                         .50 162.29
                                    .83 28.98
             . 25
                 17.39
                         .58 86.94
                                     .92 17.39
                 46.37 .67 69.55 1.00 5.80
             . 33
_____
CALIB
 NASHYD (0103)
                Area (ha)= 8.72 Curve Number (CN)= 77.0
                                  # of Linear Res.(N)= 3.00
ID= 1 DT= 5.0 min
                Ia (mm)= 7.50
----- U.H. Tp(hrs)=
                             .50
   Unit Hyd Qpeak (cms)= .666
   PEAK FLOW
               (cms)= .339 (i)
   TIME TO PEAK
               (hrs) = 1.083
   RUNOFF VOLUME (mm) = 14.268
   TOTAL RAINFALL (mm) = 48.302
   RUNOFF COEFFICIENT = .295
   (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
 CALTB
NASHYD (0102) Area (ha)= .18 Curve Number (CN)= 65.0
```

```
| ID= 1 DT= 5.0 min | Ia (mm)= 8.00 # of Linear Res.(N)= 3.00
                                                                                              hrs mm/hr | hrs mm/hr | hrs mm/hr | hrs mm/hr
----- U.H. Tp(hrs)= .06
                                                                                               .08
                                                                                                   .00
                                                                                                           .42 107.46
                                                                                                                      .75 57.31 | 1.08 7.16
                                                                                              .17
                                                                                                   7.16
                                                                                                           .50 200.59
                                                                                                                       .83 35.82
   Unit Hyd Qpeak (cms)= .115
                                                                                               .25 21.49
                                                                                                          .58 107.46
                                                                                                                      .92 21.49
                                                                                              .33 57.31 .67 85.97 1.00 7.16
   PEAK FLOW
                (cms)= .010 (i)
   TIME TO PEAK (hrs)=
                        .583
   RUNOFF VOLUME (mm) = 7.870
   TOTAL RAINFALL (mm) = 48.302
   RUNOFF COEFFICIENT = .163
                                                                                         (0103) Area (ha)= 8.72 Curve Number (CN)= 77.0
                                                                                  NASHYD
                                                                                 |ID= 1 DT= 5.0 min | Ia (mm)= 7.50 # of Linear Res.(N)= 3.00
   (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
                                                                                 ----- U.H. Tp(hrs)= .50
                                                                                    Unit Hyd Opeak (cms)= .666
 ADD HYD (0001) |
                                                                                    PEAK FLOW
                                                                                                 (cms)= .506 (i)
                                                                                    TIME TO PEAK (hrs)= 1.083
 1 + 2 = 3
                      AREA QPEAK
                                  TPEAK
                                          R.V.
                                                                                    RUNOFF VOLUME (mm) = 21.274
TOTAL RAINFALL (mm) = 59.698
                      (ha) (cms)
                                   (hrs)
                                          ( mm )
      ID1= 1 (0103):
                      8.72
                          .339
                                   1.08 14.27
                                                                                    RUNOFF COEFFICIENT = .356
      + ID2= 2 (0102):
                      .18
                          010
                                   .58
                                         7.87
       _____
       ID = 3 (0001): 8.90 .340 1.08 14.14
                                                                                    (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
   NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
                                                                                         (0102) Area (ha)= .18 Curve Number (CN)= 65.0
                                                                                 |ID= 1 DT= 5.0 min | Ia (mm)= 8.00 # of Linear Res.(N)= 3.00
 CALIB
                Area (ha)= 5.09 Curve Number (CN)= 65.0
 NASHYD (0101)
                                                                                 ----- U.H. Tp(hrs)= .06
----- U.H. Tp(hrs)= .42
                                                                                    Unit Hyd Opeak (cms)= .115
   Unit Hyd Qpeak (cms)= .463
                                                                                    PEAK FLOW
                                                                                                (cms)= .015 (i)
                                                                                    TIME TO PEAK (hrs)= .583
                                                                                    RUNOFF VOLUME (mm)= 12.168
TOTAL RAINFALL (mm)= 59.698
                       .145 (i)
   DEAK FLOW
                (cms)=
   TIME TO PEAK (hrs)= 1.083
                                                                                    RUNOFF COEFFICIENT = .204
   RUNOFF VOLUME (mm) = 9.172
   TOTAL RAINFALL (mm) = 48.302
   RUNOFF COEFFICIENT = .190
                                                                                    (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
   (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
                                                                                 | ADD HYD (0001) |
                                                                                 1 + 2 = 3
 ADD HYD (0002)
                                                                                                       (ha)
                                                                                                             (cms)
                                                                                                                    (hrs)
                                                                                                                            (mm)
1 + 2 = 3
                      AREA QPEAK
                                   TPEAK
                                          R.V.
                                                                                       ID1= 1 (0103):
                                                                                                      8.72
                                                                                                            . 506
                                                                                                                    1.08 21.27
                      (ha)
                                   (hrs)
                                           (mm)
                                                                                      + ID2= 2 (0102):
                                                                                                       .18
                                                                                                             .015
                                                                                                                     .58 12.17
                            (cms)
     ID1= 1 (0001):
                      8.90
                                   1.08
                                         14.14
                                                                                        -----
     + TD2= 2 (0101): 5.09
                          . 145
                                  1.08
                                         9.17
                                                                                        ID = 3 (0001): 8.90 .507 1.08 21.09
       ______
       ID = 3 (0002): 13.99 .486 1.08 12.33
                                                                                    NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
   NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
                                                                                 CALTR
 ******
                                                                                 | NASHYD (0101) | Area (ha)= 5.09 Curve Number (CN)= 65.0
 ** SIMULATION NUMBER: 5 ** 25-year 1-hour AES
                                                                                 ID= 1 DT= 5.0 min | Ia
                                                                                                      (mm)= 8.00 # of Linear Res.(N)= 3.00
                                                                                 ----- U.H. Tp(hrs)= .42
 *********
                                                                                    Unit Hyd Qpeak (cms)= .463
                                                                                    PEAK FLOW
                                                                                                 (cms)=
                                                                                                        .225 (i)
                  Filename: S:\Projects\2014\14118\Hydrotechnical\
 READ STORM
                                                                                    TIME TO PEAK (hrs)= 1.000
                          3-FSR Submission_March 2018\VO2\VO2\Storms\
                                                                                    RUNOFF VOLUME (mm) = 14.180
                          AES 1H 25Y.STM
                                                                                    TOTAL RAINFALL (mm) = 59.698
 Ptotal= 59.70 mm | Comments: 25yr/lhr Fergus Shand Dam 2007 (AES Curv
                                                                                    RUNOFF COEFFICIENT = .238
-----
           TIME RAIN | TIME RAIN | TIME RAIN | TIME RAIN
                                                                                    (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
```

```
ADD HYD (0002)
1 + 2 = 3
                       AREA
                           QPEAK
                                   TPEAK
                                           R.V.
                       (ha)
                             (cms)
                                     (hrs)
                                             (mm)
                             .507
       ID1= 1 (0001):
                       8.90
                                    1.08
                                           21.09
      + ID2= 2 (0101):
                       5.09
                             . 225
                                    1.00
                                           14.18
       ID = 3 (0002): 13.99 .731 1.08 18.58
   NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
_____
 *******
 ** SIMULATION NUMBER: 6 ** 50-year 1-hour AES
 *********
 READ STORM
                  Filename: S:\Projects\2014\14118\Hydrotechnical\
                           3-FSR Submission_March 2018\V02\V02\Storms\
                           AES_1H_50Y.STM
Ptotal = 68.20 mm |
                 Comments: 50yr/lhr Fergus Shand Dam 2007 (AES Curv
------
             TIME RAIN
                          TIME RAIN
                                       TIME RAIN
                                                    TIME RAIN
             hrs
                   mm/hr
                           hrs mm/hr
                                       hrs mm/hr
                                                    hrs mm/hr
                           .42 122.76
                                        .75 65.47
              .08
                    . 00
                                                   1.08 8.18
              . 17
                   8.18
                           .50 229.15
                                       .83 40.92
              .25 24.55
                          .58 122.76
                                       .92 24.55
              .33 65.47 | .67 98.21 | 1.00
                                            8.18
 NASHYD
        (0103)
                 Area (ha)= 8.72 Curve Number (CN)= 77.0
ID= 1 DT= 5.0 min | Ia
                        (mm)= 7.50 # of Linear Res.(N)= 3.00
----- U.H. Tp(hrs)= .50
   Unit Hyd Opeak (cms)=
                        .666
   PEAK FLOW
                (cms)= .641 (i)
   TIME TO PEAK (hrs)= 1.083
   RUNOFF VOLUME (mm) = 26.976
TOTAL RAINFALL (mm) = 68.198
   RUNOFF COEFFICIENT = .396
   (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
CALTR
                 Area (ha)=
 NASHYD
        (0102)
                                .18 Curve Number (CN) = 65.0
ID= 1 DT= 5.0 min | Ia
                       (mm)= 8.00 # of Linear Res.(N)= 3.00
----- U.H. Tp(hrs)=
                              .06
   Unit Hyd Qpeak (cms)=
   PEAK FLOW
                        .019 (i)
                (cms)=
   TIME TO PEAK (hrs)=
                        .583
   RUNOFF VOLUME (mm)= 15.786
TOTAL RAINFALL (mm)= 68.198
   RUNOFF COEFFICIENT =
                        .231
   (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY
```

```
| ADD HYD (0001) |
  1 + 2 = 3
                      AREA OPEAK TPEAK
                                           R V
                       (ha)
                             (cms)
                                    (hrs)
                                            (mm)
      ID1= 1 (0103):
                      8.72
                             . 641
                                    1.08
                                          26.98
      + ID2= 2 (0102):
                       .18
                             .019
                                     .58
                                          15.79
       _____
                            ID = 3 (0001):
                     8.90
                            .643
                                   1.08 26.75
   NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
 CALTB
 NASHYD (0101) Area (ha)= 5.09 Curve Number (CN)= 65.0
|ID= 1 DT= 5.0 min | Ia (mm)= 8.00 # of Linear Res.(N)= 3.00
----- U.H. Tp(hrs)= .42
   Unit Hyd Qpeak (cms)=
                        .463
   PEAK FLOW
                (cms)=
                        .292 (i)
    TIME TO PEAK (hrs)= 1.000
   RUNOFF VOLUME
                (mm) = 18.396
    TOTAL RAINFALL (mm) = 68.198
    RUNOFF COEFFICIENT =
   (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
| ADD HYD (0002) |
 1 + 2 = 3
                      AREA QPEAK TPEAK
                                           R.V.
                      (ha) (cms)
                                    (hrs)
                                           ( mm )
      TD1= 1 (0001):
                                          26 75
                             643
                                    1 0.8
                      8 90
      + TD2= 2 (0101):
                     5.09
                                          18.40
                           . 292
                                    1.00
       ______
       ID = 3 (0002): 13.99 .933
                                   1.08 23.71
   NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
 *******
 ** SIMULATION NUMBER: 7 ** 100-year 1-hour AES
 *******
 READ STORM
                  Filename: S:\Projects\2014\14118\Hydrotechnical\
                          3-FSR Submission_March 2018\V02\V02\Storms\
                           AES_1H_100Y.STM
Ptotal= 76.60 mm
                  Comments: 100yr/lhr Fergus Shand Dam 2007 (AES Cur
                               RAIN
                                            RAIN
                   RAIN
                          TIME
                                      TIME
                          hrs mm/hr
                                      hrs mm/hr
                   mm/hr
              .08
                           .42 137.88
                                       .75
                                            73.54
                                                  1.08
                                                         9.19
              .17
                   9.19
                          .50 257.38
                                      .83
                                           45.96
              .25
                   27.58
                           .58
                              137.88
                                        .92
                                            27.58
              .33 73.54 .67 110.30 1.00 9.19
CALTB
                 Area (ha)= 8.72 Curve Number (CN)= 77.0
Ia (mm)= 7.50 # of Linear Res.(N)= 3.00
 NASHYD (0103)
TD= 1 DT= 5.0 min |
-----
                U.H. Tp(hrs)= .50
```

```
Unit Hyd Qpeak (cms)= .666
              (cms)= .783 (i)
   PEAK FLOW
   TIME TO PEAK (hrs) = 1.083
   RUNOFF VOLUME (mm) = 32.935
TOTAL RAINFALL (mm) = 76.601
   RUNOFF COEFFICIENT = .430
   (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
 CALIB
----- U.H. Tp(hrs)= .06
   Unit Hyd Qpeak (cms)= .115
   PEAK FLOW
              (cms)= .024 (i)
   TIME TO PEAK (hrs)= .583
   RUNOFF VOLUME (mm) = 19.661
   TOTAL RAINFALL (mm)= 76.601
   RUNOFF COEFFICIENT = .257
   (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
| ADD HYD (0001) |
                    AREA QPEAK TPEAK
1 + 2 = 3
                                        R.V.
                     (ha) (cms)
                                 (hrs)
                                         (mm)
     ID1= 1 (0103): 8.72 .783
+ ID2= 2 (0102): .18 .024
                                 1.08 32.94
                                 .58 19.66
       _____
      ID = 3 (0001): 8.90 .785 1.08 32.67
   NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
----- U.H. Tp(hrs)= .42
   Unit Hyd Qpeak (cms)= .463
   PEAK FLOW
             (cms)= .364 (i)
   TIME TO PEAK (hrs)= 1.000
RUNOFF VOLUME (mm)= 22.913
TOTAL RAINFALL (mm)= 76.601
   RUNOFF COEFFICIENT = .299
   (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
______
| ADD HYD (0002) |
 1 + 2 = 3
                     AREA QPEAK
                                 TPEAK
                     (ha) (cms)
                                 (hrs)
                                        (mm)
       ID1= 1 (0001):
                     8.90
                          .785
                                 1.08
                                       32.67
     + ID2= 2 (0101): 5.09
                         .364
                                1.00 22.91
      ID = 3 (0002): 13.99 1.145 1.08 29.12
   NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
```

FINISH

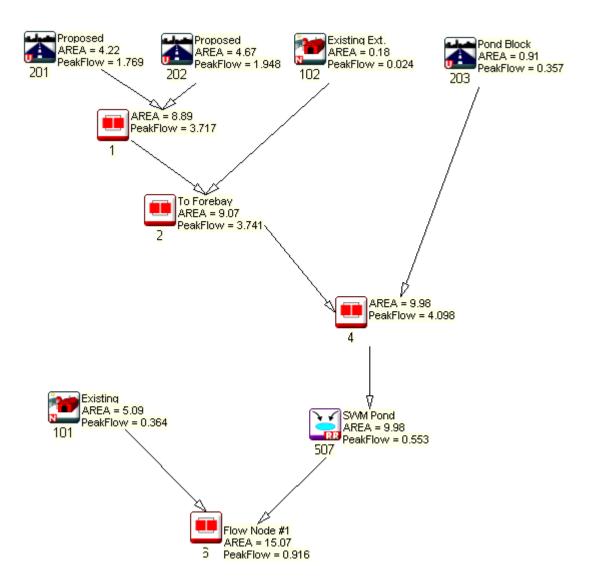


Figure D.3: VO2 Model Schematic - Proposed Conditions

_____ -----V V I SSSSS U U A L v v SS U U A A L V V I SS U U AAAAA L v v SS U U A A L VV SSSSS UUUUU A A LLLLL OOO TTTTT TTTTT H H Y Y M M OOO TM, Version 2.0 O O T T H H Y Y M M M O O O O T T H H Y Y M M O O T H H Y M M O O Licensed To: Valdor Engineering T H H Y M M 000 VO2-0156 Developed and Distributed by Greenland International Consulting Inc. Copyright 1996, 2001 Schaeffer & Associates Ltd. All rights reserved. ***** DETAILED OUTPUT **** Input filename: C:\Program Files\Visual OTTHYMO v2.0\voin.dat Output filename: S:\Projects\2014\14118\Hydrotechnical\0-Working\VO2\VO2\14118\14118_Proposed.out Summary filename: S:\Projects\2014\14118\Hydrotechnical\0-Working\VO2\VO2\14118\14118_Proposed.sum DATE: 10/16/2018 TIME: 2:15:35 PM USER: COMMENTS: Proposed Conditions VO2 Model Output ******* ** SIMULATION NUMBER: 1 ** 25mm Chicago ******* READ STORM Filename: S:\Projects\2014\14118\Hydrotechnical\ 3-FSR Submission_March 2018\V02\V02\Storms\ 25mmchi.stm Ptotal= 25.02 mm Comments: 25mm CHICAGO Storm TIME TIME TIME TIME RAIN RAIN RAIN RAIN mm/hr mm/hr mm/hr hrs mm/hr hrs hrs hrs 2.17 1.17 6.20 2.17 5.62 3.17 2.95 .17 .33 2.38 1.33 12.18 2.33 4.80 3.33 2.76 1.50 41.67 2.50 3.50 . 50 2.66 4.21 2.62 .67 1.67 2.67 3.03 15.28 3.78 3.67 2.47 3.58 9.22 3.45 .83 1.83 2.83 3.83 2.35 1.00 4.47 2.00 6.88 3.00 3.18 4.00 2.23 CALTR NASHYD (0102) (ha) =Curve Number (CN)= 65.0 Area |ID= 1 DT= 5.0 min | (mm)= 8.00 # of Linear Res.(N)= 3.00 U.H. Tp(hrs)= .06

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR	ANSFORMEI	HYETOGI	RAPH		
TIME	RAIN	TIME	RAIN	TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	hrs	mm/hr	hrs	mm/hr
.083	2.17	1.083	6.20	2.083	5.62	3.08	2.95
.167	2.17	1.167	6.20	2.167	5.62	3.17	2.95
.250	2.38	1.250	12.18	2.250	4.80	3.25	2.76
.333	2.38	1.333	12.18	2.333	4.80	3.33	2.76
.417	2.66	1.417	41.67	2.417	4.21	3.42	2.62
.500	2.66	1.500	41.67	2.500	4.21	3.50	2.62
.583	3.03	1.583	15.28	2.583	3.78	3.58	2.47
.667	3.03	1.667	15.28	2.667	3.78	3.67	2.47
.750	3.58	1.750	9.22	2.750	3.45	3.75	2.35
.833	3.58	1.833	9.22	2.833	3.45	3.83	2.35
.917	4.47	1.917	6.88	2.917	3.18	3.92	2.23
1.000	4.47	2.000	6.88	3.000	3.18	4.00	2.23

Unit Hyd Qpeak (cms) = .115

PEAK FLOW (cms) = .001 (i)
TIME TO PEAK (hrs) = 1.500
RUNOFF VOLUME (mm) = 1.616
TOTAL RAINFALL (mm) = 25.023
RUNOFF COEFFICIENT = .065

(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB STANDHYD (0202) (ha)= 4.67 Area Total Imp(%)= 70.00 Dir. Conn.(%)= 55.00 ID= 1 DT= 5.0 min | IMPERVIOUS PERVIOUS (i) (ha)= Surface Area 3 27 1 40 1.00 5.00 Dep. Storage (mm) = Average Slope (%)= 1.00 2.00 Length (m)= 176.40 40.00 Mannings n .013 .250 Max.Eff.Inten.(mm/hr)= 41.67 6.26 over (min) 5.00 30.00 Storage Coeff. (min)= 5.10 (ii) 26.47 (ii) Unit Hyd. Tpeak (min)= 30.00 Unit Hyd. peak (cms)= .04 *TOTALS* PEAK FLOW (cms)= .01 .269 (iii) TIME TO PEAK (hrs)= 1.50 2.08 1.50 15.30 RUNOFF VOLUME (mm) = 24.02 4.64 TOTAL RAINFALL (mm) = 25.02 25.02 25.02 RUNOFF COEFFICIENT = .19 .96 .61

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
 CN* = 68.0 Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
- THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB								
STANDHYD (0201)	Area	(ha)=	4.22					
ID= 1 DT= 5.0 min	Total	Imp(%)=	70.00	Dir.	Conn.(%)=	55.00		
IMPERVIOUS PERVIOUS (i)								
Surface Area	(ha)=	2.9	5	1.2	7			
Dep. Storage	(mm) =	1.0	0	5.0	0			
Average Slope	(%)=	1.0	0	2.0	0			

	Length	(m)=	167.70	40.00	
	Mannings n	=	.013	.250	
	Max.Eff.Inten.(r	mm/hr)=	41.67	6.26	
	over	(min)	5.00	30.00	
	Storage Coeff.	(min)=	4.94 (i	i) 26.32 (i	ii)
	Unit Hyd. Tpeak	(min)=	5.00	30.00	
	Unit Hyd. peak	(cms)=	.22	.04	
					TOTALS
	PEAK FLOW	(cms)=	. 24	.01	.245 (iii)
	TIME TO PEAK	(hrs)=	1.50	2.08	1.50
	RUNOFF VOLUME	(mm) =	24.02	4.64	15.30
	TOTAL RAINFALL	(mm) =	25.02	25.02	25.02
	RUNOFF COEFFICIA	ENT =	.96	.19	.61
***	* WARNING: STORAG	TP COPPE	TO CMATTED	тилм ттме сті	201
	WARNING. SIORA	JE COEFF.	IS SMALLER	IDAN IIME SII	er:

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
- ${
 m CN^{\star}}$ = 68.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

ADD HYD (0001)				
1 + 2 = 3	AREA	QPEAK	TPEAK	R.V.
	(ha)	(cms)	(hrs)	(mm)
ID1= 1 (0202):	4.67	.269	1.50	15.30
+ ID2= 2 (0201):	4.22	.245	1.50	15.30
=======================================				
TD = 3 (0001):	8 8 9	514	1 50	15 30

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

ADD HYD (0002)				
1 + 2 = 3	AREA	QPEAK	TPEAK	R.V.
	(ha)	(cms)	(hrs)	(mm)
ID1= 1 (0102):	.18	.001	1.50	1.62
+ ID2= 2 (0001):	8.89	.514	1.50	15.30
TD = 3 (0002):	9.07	. 515	1.50	15.03

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

CALIB STANDHYD (0203) Area (ha)= .91 Total Imp(%)= 50.00 Dir. Conn.(%)= 50.00 |ID= 1 DT= 5.0 min | PERVIOUS (i) IMPERVIOUS Surface Area . 46 (ha)= 46 Dep. Storage (mm) = 1.00 5.00 Average Slope (%)= 1.00 2.00 Length (m)= 77.90 25.00 Mannings n 41.67 Max.Eff.Inten.(mm/hr)= 2.35 over (min) 5.00 30.00 Storage Coeff. (min)= 3.12 (ii) 27.00 (ii) Unit Hyd. Tpeak (min)= 5.00 30.00 Unit Hyd. peak (cms)= . 27 .04 *TOTALS* PEAK FLOW (cms)= .05 .051 (iii) TIME TO PEAK (hrs)= 1.50 2.08 1.50

RUNOFF VOLUME	(mm) =	24.02	2.87	13.43
TOTAL RAINFALL	(mm) =	25.02	25.02	25.02
RUNOFF COEFFICIEN	IT =	.96	.11	.54

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 68.0 Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

ADD HYD (0004)				
1 + 2 = 3	AREA	QPEAK	TPEAK	R.V.
	(ha)	(cms)	(hrs)	(mm)
ID1= 1 (0002):	9.07	.515	1.50	15.03
+ ID2= 2 (0203):	.91	.051	1.50	13.43
=============				======
ID = 3 (0004):	9.98	.566	1.50	14.88

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

RESERVOIR (0507) IN= 2> OUT= 1									
DT= 5.0 min	OUTFLOW	STORAGE	OUTFLOW	STORAGE					
	(cms)	(ha.m.)	(cms)	(ha.m.)					
	.0000	.0000	.0841	.2018					
	.0104	.0936	.2110	.2412					
	.0114	.1106	.3271	.2824					
	.0123	.1280	.4574	.3700					
	.0132	.1459	.5576	.4643					
	.0140	.1641	2.1858	.5137					
	.0390	.1828	5.1234	.5648					
	ARE!	A QPEAK	TPEAK	R.V.					
	(ha)	(cms)	(hrs)	(mm)					
INFLOW : ID= 2 (00	04) 9.98	.57	1.50	14.88					
OUTFLOW: ID= 1 (05	07) 9.98	.01	4.25	14.65					

PEAK FLOW REDUCTION [Qout/Qin](%)= 2.24 TIME SHIFT OF PEAK FLOW (min)=165.00 MAXIMUM STORAGE USED (ha.m.)= .1352

CALIB				
NASHYD (0101)	Area	(ha) =	5.09	Curve Number (CN) = 65.0
ID= 1 DT= 5.0 min	Ia	(mm) =	8.00	# of Linear Res.(N)= 3.00
	U.H.	Tp(hrs)=	.42	
Unit Hyd Qpeak	(cms)=	.463		

PEAK FLOW (cms)= .012 (i) TIME TO PEAK (hrs) = 2.333 RUNOFF VOLUME (mm) = 1.884 TOTAL RAINFALL (mm) = 25.023 RUNOFF COEFFICIENT =

(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

| ADD HYD (0006) | 1 + 2 = 3 AREA QPEAK TPEAK R.V.

	-	(ha) (cms)	(hrs)	(mm)	
ID1= 1 (05 + ID2= 2 (01	507):	9.98 .	013	4.25	14.65	
				2.33	1.88	
ID = 3 (00					10.34	
NOTE: PEAK FLO	OWS DO NOT	INCLUDE	BASEFLO	WS IF AN	Y.	

** SIMULATION NUME	BER: 2 '	* 2-ye	ear 1-	-hour	AES	

READ STORM	Filer					technical\ VO2\VO2\Storms\
			1H_2Y.S		.ICII 2016 \	VOZ (VOZ (SCOI IIIS
Ptotal= 25.60 mm	Comme	ents: 2yr/	lhr Fer	gus Shan	d Dam 200	7 (AES Curve
TIM	ME RAIN	1 TIME	RAIN	TIME	RAIN	TIME RAIN hrs mm/hm 1.08 3.07
hı	s mm/hi	hrs	mm/hr	hrs	mm/hr	hrs mm/h
. (7 3 0	7 .42	86 02	./5	15 36	1 1.00 3.0
	25 9 23	7 .50	46 08	92	9 22	ŀ
	33 24.58	.67	36.86	1.00	3.07	i
CALIB						
NASHYD (0102)	Area	(ha) =	.18	Curve N	umber (CN)= 65.0
ID= 1 DT= 5.0 min	Ia	(mm) =	8.00	# of Li	near Res.	(N) = 3.00
CALIB NASHYD (0102) ID= 1 DT= 5.0 min	U.H. 7	rp(hrs)=	.06			
Unit Hyd Qpeak						
onic nya Qpeak	(Cilis) =	.113				
PEAK FLOW	(cms)=	.002 (i	.)			
TIME TO PEAK RUNOFF VOLUME	(hrs)=	.002 (i				
RUNOFF VOLUME	(mm) =	1.720				
TOTAL RAINFALL						
RUNOFF COEFFICE	ENT =	.067				
(i) PEAK FLOW I	OOES NOT I	INCLUDE BA	SEFLOW	IF ANY.		
CALIB						
STANDHYD (0202)	Area	(ha) =	4.67			
STANDHYD (0202) ID= 1 DT= 5.0 min	Total	Imp(%)=	70.00	Dir. Co	nn.(%)=	55.00
Surface Area Dep. Storage Average Slope Length		IMPERVIC	US P	ERVIOUS	(i)	
Surface Area	(na)=	3.27		1.40		
Average Clone	(11111) =	1.00	1	2.00		
Length	(o) = (m) =	176 40	! 	40 00		
Mannings n	=	.013		.250		
Max.Eff.Inten.	mm/hr)=	86.02	!	18.30		
over	(min)	5.00	ı	20.00		
Storage Coeff.	(min)=	3.81	(ii)	17.74 (ii)	
Unit Hyd. Tpeak	(min)=	5.00	1	20.00		
Max.Eff.Inten.(over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak	(cms)=	. 25	i	.06		
					10	TALS
PEAK FLOW	(cms)=	.52		.04		.527 (iii)
PEAK FLOW TIME TO PEAK RUNOFF VOLUME	(mrs)=	24 60	1	.92 4.86	1	.50 5.72
RUNOFF VOLUME	(mm)=	24.60		4.80		5.72

25.60

.96

.19

25.60

.61

25.60

RUNOFF VOLUME (mm) =
TOTAL RAINFALL (mm) =
RUNOFF COEFFICIENT =

**** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
- ${
 m CN^{\star}}$ = 68.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
- THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB								
STANDHYD (0201)	Area	(ha)=	4.22					
ID= 1 DT= 5.0 min	Total	Imp(%)=	70.00	Dir. C	Conn.(%)=	55.00		
·		-						
		IMPERVIO	JS	PERVIOUS	S (i)			
Surface Area	(ha)=	2.95		1.27				
Dep. Storage	(mm) =	1.00		5.00				
Average Slope	(%)=	1.00		2.00				
Length	(m)=	167.70		40.00				
Mannings n	=	.013		.250				
Max.Eff.Inten.(r	nm/hr)=	86.02		18.30				
over	(min)	5.00		20.00				
Storage Coeff.	(min) =	3.70	(ii)	17.62	(ii)			
Unit Hyd. Tpeak	(min)=	5.00		20.00				
Unit Hyd. peak	(cms)=	. 25		.06				
					T	OTALS		
PEAK FLOW	(cms)=	.48		.04			(iii)	
TIME TO PEAK	(hrs)=	.50		.92		.50	,	

24.60

25.60

.96

4.86

25.60

15.72

25.60

.61

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

RUNOFF VOLUME (mm)=

TOTAL RAINFALL (mm)=

RUNOFF COEFFICIENT =

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
- ${
 m CN^{\star}}$ = 68.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
- THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

ADD HYD (0001) 1 + 2 = 3	AREA	OPEAK	TPEAK	R.V.
1 + 2 = 3	ARLA	QPLAK	IPLAN	R.V.
	(ha)	(cms)	(hrs)	(mm)
ID1= 1 (0202):	4.67	.527	.50	15.72
+ ID2= 2 (0201):	4.22	.480	.50	15.72
TD = 3 (0001):	8.89	1.007	.50	15.72

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

ADD HYD (0002)				
1 + 2 = 3	AREA	QPEAK	TPEAK	R.V.
	(ha)	(cms)	(hrs)	(mm)
ID1= 1 (0102):	.18	.002	.67	1.72
+ ID2= 2 (0001):	8.89	1.007	.50	15.72
============				
ID = 3 (0002):	9.07	1.008	.50	15.44

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

CALTR

	Total Imp	ha)= .91 (%)= 50.00	Dir. Conn.(%)= 50.00
Surface Area Dep. Storage Average Slope Length Mannings n	(ha)= (mm)= (%)= (m)= =	.46 1.00 1.00 77.90 .013	PERVIOUS (i) .46 5.00 2.00 25.00 .250	
Max.Eff.Inten. ove Storage Coeff Unit Hyd. Tpea Unit Hyd. peak				*TOTALS*
PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALI RUNOFF COEFFIC	(cms) = (hrs) = (mm) = (mm) = IENT =	.10 .50 24.60 25.60	.01 .92 3.03 25.60	.103 (iii) .50 13.80 25.60 .54
CN* = (ii) TIME STE	DURE SELECTED 68.0 Ia = P (DT) SHOULD STORAGE COEF	FOR PERVIOU Dep. Storag BE SMALLER FICIENT.	JS LOSSES: ge (Above) OR EQUAL	
ADD HYD (0004) 1 + 2 = 3 ID1= 1 (0	1 300	A QPEAK) (cms) 7 1.008	TPEAK R.'	J. n)
ID = 3 (C	004): 9.9	8 1.111 CLUDE BASEFI	.50 15.29	== 9
ID = 3 (C		8 1.111 CLUDE BASEFI	.50 15.29	

```
| NASHYD (0101) | Area (ha)= 5.09 Curve Number (CN)= 65.0
|ID= 1 DT= 5.0 min | Ia (mm)= 8.00 # of Linear Res.(N)= 3.00
-----
                 U.H. Tp(hrs)= .42
   Unit Hyd Qpeak (cms)= .463
   PEAK FLOW
                 (cms) = .032 (i)
    TIME TO PEAK (hrs)= 1.083
    RUNOFF VOLUME (mm) = 2.006
   TOTAL RAINFALL (mm) = 25.601
   RUNOFF COEFFICIENT = .078
   (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
ADD HYD (0006)
1 + 2 = 3
                       AREA QPEAK TPEAK R.V.
                       (ha)
                              (cms)
                                      (hrs)
                                              (mm)
                                     1.58 15.06
      ID1= 1 (0507):
                            .013
                       9 98
      + ID2= 2 (0101):
                      5.09
                              .032
                                    1.08
                                            2.01
        _____
      ID = 3 (0006): 15.07 .045 1.08 10.65
   NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
 *******
 ** SIMULATION NUMBER: 3 ** 5-year 1-hour AES
 ********
READ STORM
                   Filename: S:\Projects\2014\14118\Hydrotechnical\
                           3-FSR Submission_March 2018\V02\V02\Storms\
                           AES_1H_5Y.STM
Ptotal= 39.20 mm
                 Comments: 5yr/1hr Fergus Shand Dam 2007 (AES Curve
                   RAIN
                          TIME RAIN | TIME RAIN | TIME RAIN
             TIME
                           hrs mm/hr
                                       hrs mm/hr
              hrs
                   mm/hr
                                                     hrs mm/hr
              .08
                    .00
                           .42 70.56
                                        .75 37.63
                                                    1.08 4.70
                           .50 131.71
              .17
                    4.70
                                        .83 23.52
              . 25
                  14.11
                          .58 70.56
                                        .92 14.11
              .33 37.63 | .67 56.45 | 1.00 4.70
CALTE
 NASHYD (0102) Area (ha)= .18 Curve Number (CN)= 65.0
|ID= 1 DT= 5.0 min | Ia (mm)= 8.00 # of Linear Res.(N)= 3.00
----- U.H. Tp(hrs)= .06
   Unit Hyd Qpeak (cms)= .115
   PEAK FLOW
                 (cms)= .006 (i)
   TIME TO PEAK (hrs)= .667
   RUNOFF VOLUME (mm) = 4.972
   TOTAL RAINFALL (mm) = 39.198
   RUNOFF COEFFICIENT = .127
    (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
 CALTR
| STANDHYD (0202) | Area (ha)= 4.67 | ID= 1 DT= 5.0 min | Total Imp(%)= 70.00 Dir. Conn.(%)= 55.00
```

ADD HYD (0001) | 1 + 2 = 3

ID1= 1 (0202):

AREA

(ha)

4.67

+ ID2= 2 (0201): 4.22 .807

QPEAK

(cms)

.887

(hrs)

.50

.50

(mm)

26.02

26.02

Surface Area (ha)= 3.27 1.40 Dep. Storage (mm)= 1.00 5.00 Average Slope (%)= 1.00 2.00 Length (m)= 176.40 40.00 Mannings n = .013 .250 Max.Eff.Inten.(mm/hr)= 131.71 44.95			IMPERVIOUS	PERVIOUS (i)	
Max.Eff.Inten.(mm/hr) = 131.71	Surface Area	(ha)=	2 00	7 40	
Max.Eff.Inten.(mm/hr) = 131.71	Dep. Storage	(mm)=	1.00	5.00	
Max.Eff.Inten.(mm/hr) = 131.71	Average Slope	(%)=	1.00	2.00	
Max.Eff.Inten.(mm/hr) = 131.71	Length	(m)=	176.40	40.00	
Max.Eff.Inten.(mm/hr) = 131.71	Mannings n	=	.013	.250	
PEAK FLOW (cms)= .83 .13 .887 (iii) TIME TO PEAK (hrs)= .50 .67 .50 RUNOFF VOLUME (mm)= 38.20 11.13 26.02 TOTAL RAINFALL (mm)= 39.20 39.20 39.20 RUNOFF COEFFICIENT = .97 .28 .66 * WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:	Mar Eff Inton /s	mm /b == \ -	121 71	44.05	
PEAK FLOW (cms) = .83 .13 .887 (iii) TIME TO PEAK (hrs) = .50 .67 .50 RUNOFF VOLUME (mm) = 38.20 11.13 26.02 TOTAL RAINFALL (mm) = 39.20 39.20 39.20 RUNOFF COEFFICIENT = .97 .28 .66 * WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:	Max.EII.IIIceii.(i	(min)	E 00	10.00	
PEAK FLOW (cms) = .83 .13 .887 (iii) TIME TO PEAK (hrs) = .50 .67 .50 RUNOFF VOLUME (mm) = 38.20 11.13 26.02 TOTAL RAINFALL (mm) = 39.20 39.20 39.20 RUNOFF COEFFICIENT = .97 .28 .66 * WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:	Storage Cooff	(min) =	2 22 (44)	0 10 (44)	
PEAK FLOW (cms) = .83 .13 .887 (iii) TIME TO PEAK (hrs) = .50 .67 .50 RUNOFF VOLUME (mm) = 38.20 11.13 26.02 TOTAL RAINFALL (mm) = 39.20 39.20 39.20 RUNOFF COEFFICIENT = .97 .28 .66 * WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:	Unit Had Thook	(min)=	5.22 (11)	10 00	
PEAK FLOW (cms) = .83 .13 .887 (iii) TIME TO PEAK (hrs) = .50 .67 .50 RUNOFF VOLUME (mm) = 38.20 11.13 26.02 TOTAL RAINFALL (mm) = 39.20 39.20 39.20 RUNOFF COEFFICIENT = .97 .28 .66 * WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:	Unit Hyd. Ipeak	(mmm) =	27	10.00	
PEAK FLOW (cms) = .83 .13 .887 (iii) TIME TO PEAK (hrs) = .50 .67 .50 RUNOFF VOLUME (mm) = 38.20 11.13 26.02 TOTAL RAINFALL (mm) = 39.20 39.20 39.20 RUNOFF COEFFICIENT = .97 .28 .66 * WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:	Unit myd. peak	(Cilis)=	. 21	.13	*TOTALS*
* WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:	DEAK ELOW	(cme) =	83	13	887 (iii)
* WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:	TIME TO DEAK	(bre)=	.03	67	50
* WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:	DINOPE VOLUME	(III 5) =	20 20	11 12	26.02
* WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:	MOMAT DATAMATI	(mm) =	30.20	20.20	20.02
* WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:	DIMORE CORRETOR	(IIIII) = 2NT =	37.20	39.20 28	39.40
(i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:	MONOFF COMPTCH		,	. 20	.00
CN* = 68.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. LIB NDEHYD (0201) Area (ha) = 4.22 1 DT = 5.0 min Total Imp(%) = 70.00 Dir. Conn.(%) = 55.00 LIB NDEHYD (0201) Area (ha) = 4.22 1 DT = 5.0 min Total Imp(%) = 70.00 Dir. Conn.(%) = 55.00 LIB NDEHYD (0201) Area (ha) = 4.22 1 DT = 5.0 min Total Imp(%) = 70.00 Dir. Conn.(%) = 55.00 Surface Area (ha) = 2.95 1.27 Dep. Storage (mm) = 1.00 5.00 Average Slope (%) = 1.00 2.00 Length (m) = 167.70 40.00 Mannings n = .013 .250 Max.Eff.Inten.(mm/hr) = 131.71 44.95					
LIB Area (ha)= 4.22 1 DT= 5.0 min Total Imp(%)= 70.00 Dir. Conn.(%)= 55.00 IMPERVIOUS PERVIOUS (i)	(ii) TIME STEP	(DT) SHOU	JLD BE SMALLER		
1 DT= 5.0 min Total Imp(%)= 70.00 Dir. Conn.(%)= 55.00	CALIB				
Surface Area (ha) = 2.95 1.27 Dep. Storage (mm) = 1.00 5.00 Average Slope (%) = 1.00 2.00 Length (m) = 167.70 40.00 Mannings n = .013 .250 Max.Eff.Inten.(mm/hr) = 131.71 44.95					%)= 55.00
Surface Area (ha) = 2.95 1.27 Dep. Storage (mm) = 1.00 5.00 Average Slope (%) = 1.00 2.00 Length (m) = 167.70 40.00 Mannings n = .013 .250 Max.Eff.Inten.(mm/hr) = 131.71 44.95			IMPERVIOUS	PERVIOUS (i)	
Max.Eff.Inten.(mm/hr) = 131.71 44.95 over (min) 5.00 10.00 Storage Coeff. (min) = 3.12 (ii) 8.08 (ii) Unit Hyd. Tpeak (min) = 5.00 10.00 Unit Hyd. peak (cms) = .27 .13 **TOTALS* PEAK FLOW (cms) = .76 .12 .807 (iii) TIME TO PEAK (hrs) = .50 .67 .50 RUNOFF VOLUME (mm) = 38.20 11.13 26.02 TOTAL RAINFALL (mm) = 39.20 39.20 39.20 RUNOFF COEFFICIENT = .97 .28 .66 ** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 68.0 Ia = Dep. Storage (Above)		(ha)=	2 95	1.27	
Max.Eff.Inten.(mm/hr) = 131.71 44.95 over (min) 5.00 10.00 Storage Coeff. (min) = 3.12 (ii) 8.08 (ii) Unit Hyd. Tpeak (min) = 5.00 10.00 Unit Hyd. peak (cms) = .27 .13 **TOTALS* PEAK FLOW (cms) = .76 .12 .807 (iii) TIME TO PEAK (hrs) = .50 .67 .50 RUNOFF VOLUME (mm) = 38.20 11.13 26.02 TOTAL RAINFALL (mm) = 39.20 39.20 39.20 RUNOFF COEFFICIENT = .97 .28 .66 ** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 68.0 Ia = Dep. Storage (Above)	Surface Area				
Max.Eff.Inten.(mm/hr) = 131.71 44.95 over (min) 5.00 10.00 Storage Coeff. (min) = 3.12 (ii) 8.08 (ii) Unit Hyd. Tpeak (min) = 5.00 10.00 Unit Hyd. peak (cms) = .27 .13 **TOTALS* PEAK FLOW (cms) = .76 .12 .807 (iii) TIME TO PEAK (hrs) = .50 .67 .50 RUNOFF VOLUME (mm) = 38.20 11.13 26.02 TOTAL RAINFALL (mm) = 39.20 39.20 39.20 RUNOFF COEFFICIENT = .97 .28 .66 ** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 68.0 Ia = Dep. Storage (Above)	Surface Area Dep. Storage	(mm) =	1.00	5.00	
Max.Eff.Inten.(mm/hr) = 131.71 44.95 over (min) 5.00 10.00 Storage Coeff. (min) = 3.12 (ii) 8.08 (ii) Unit Hyd. Tpeak (min) = 5.00 10.00 Unit Hyd. peak (cms) = .27 .13 **TOTALS* PEAK FLOW (cms) = .76 .12 .807 (iii) TIME TO PEAK (hrs) = .50 .67 .50 RUNOFF VOLUME (mm) = 38.20 11.13 26.02 TOTAL RAINFALL (mm) = 39.20 39.20 39.20 RUNOFF COEFFICIENT = .97 .28 .66 ** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 68.0 Ia = Dep. Storage (Above)	Surface Area Dep. Storage Average Slope	(mm) = (%) =	1.00	5.00	
Max.Eff.Inten.(mm/hr) = 131.71 44.95 over (min) 5.00 10.00 Storage Coeff. (min) = 3.12 (ii) 8.08 (ii) Unit Hyd. Tpeak (min) = 5.00 10.00 Unit Hyd. peak (cms) = .27 .13 **TOTALS* PEAK FLOW (cms) = .76 .12 .807 (iii) TIME TO PEAK (hrs) = .50 .67 .50 RUNOFF VOLUME (mm) = 38.20 11.13 26.02 TOTAL RAINFALL (mm) = 39.20 39.20 39.20 RUNOFF COEFFICIENT = .97 .28 .66 ** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 68.0 Ia = Dep. Storage (Above)	Surface Area Dep. Storage Average Slope Length	(mm) = (%) = (m) =	1.00 1.00 167.70	5.00 2.00 40.00	
PEAR FLOW	Surface Area Dep. Storage Average Slope Length Mannings n	(mm) = (%) = (m) = =	1.00 1.00 167.70	5.00 2.00 40.00 .250	
PEAR FLOW	Surface Area Dep. Storage Average Slope Length Mannings n	(mm) = (%) = (m) = =	1.00 1.00 167.70 .013	5.00 2.00 40.00 .250	
PEAR FLOW	Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten.(r	(mm) = (%) = (m) = = am/hr) =	1.00 1.00 167.70 .013	5.00 2.00 40.00 .250 44.95	
PEAR FLOW	Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten.(r	(mm) = (%) = (m) = = am/hr) = (min)	1.00 1.00 167.70 .013	5.00 2.00 40.00 .250 44.95 10.00	
PEAR FLOW	Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten.(r over Storage Coeff.	(mm) = (%) = (m) = = nm/hr) = (min) (min) =	1.00 1.00 167.70 .013 131.71 5.00 3.12 (ii)	5.00 2.00 40.00 .250 44.95 10.00 8.08 (ii)	
PEAR FLOW	Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten.(r over Storage Coeff. Unit Hyd. Tpeak	(mm) = (%) = (m) = = = mm/hr) = (min) (min) = (min) =	1.00 1.00 167.70 .013 131.71 5.00 3.12 (ii) 5.00	5.00 2.00 40.00 .250 44.95 10.00 8.08 (ii) 10.00	
PEAR FLOW	Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten.(r over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak	(mm) = (%) = (m) = = = mm/hr) = (min) (min) = (min) = (cms) =	1.00 1.00 167.70 .013 131.71 5.00 3.12 (ii) 5.00 .27	5.00 2.00 40.00 .250 44.95 10.00 8.08 (ii) 10.00 .13	
* WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 68.0 Ia = Dep. Storage (Above)	Max.Eff.Inten.(r over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak	mm/hr) = (min) (min) = (min) = (cms) =	131.71 5.00 3.12 (ii) 5.00 .27	44.95 10.00 8.08 (ii) 10.00 .13	*TOTALS*
* WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 68.0 Ia = Dep. Storage (Above)	Max.Eff.Inten.(r over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak	mm/hr) = (min) (min) = (min) = (cms) =	131.71 5.00 3.12 (ii) 5.00 .27	44.95 10.00 8.08 (ii) 10.00 .13	*TOTALS* .807 (iii)
* WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 68.0 Ia = Dep. Storage (Above)	Max.Eff.Inten.(r over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak	mm/hr) = (min) (min) = (min) = (cms) =	131.71 5.00 3.12 (ii) 5.00 .27	44.95 10.00 8.08 (ii) 10.00 .13	*TOTALS* .807 (iii) .50
* WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 68.0 Ia = Dep. Storage (Above)	Max.Eff.Inten.(r over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak	mm/hr) = (min) (min) = (min) = (cms) =	131.71 5.00 3.12 (ii) 5.00 .27	44.95 10.00 8.08 (ii) 10.00 .13	*TOTALS* .807 (iii) .50 26.02
* WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 68.0 Ia = Dep. Storage (Above)	Max.Eff.Inten.(r over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak	mm/hr) = (min) (min) = (min) = (cms) =	131.71 5.00 3.12 (ii) 5.00 .27	44.95 10.00 8.08 (ii) 10.00 .13	*TOTALS* .807 (iii) .50 26.02 39.20
CN* = 68.0 Ia = Dep. Storage (Above)	Max.Eff.Inten.(r over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak	mm/hr) = (min) (min) = (min) = (cms) =	131.71 5.00 3.12 (ii) 5.00 .27	44.95 10.00 8.08 (ii) 10.00 .13	*TOTALS* .807 (iii) .50 26.02 39.20 .66
	Max.Eff.Inten.(r over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICI	mm/hr) = (min) = (min) = (min) = (cms) = (cms) = (mn) = (mm) = (mm) = cms = (mn) = (mn) = cms = (mn) = (131.71 5.00 3.12 (ii) 5.00 .27 .76 .50 38.20 39.20 .97	44.95 10.00 8.08 (ii) 10.00 .13 .12 .67 11.13 39.20 .28	*TOTALS* .807 (iii) .50 26.02 39.20 .66
THAN THE STORAGE COEFFICIENT.	Max.Eff.Inten.(r over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICIE ** WARNING: STORAG (i) CN PROCEDU	<pre>mm/hr) = (min) (min) = (min) = (cms) = (cms) = (hrs) = (mm) = (mm) = ENT = GE COEFF.</pre>	131.71 5.00 3.12 (ii) 5.00 .27 .76 .50 38.20 39.20 .97 IS SMALLER TH	44.95 10.00 8.08 (ii) 10.00 .13 .12 .67 11.13 39.20 .28 AN TIME STEP! US LOSSES:	*TOTALS* .807 (iii) .50 26.02 39.20 .66

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. | ADD HYD (0002) | 1 + 2 = 3 AREA QPEAK (ha) (cms) (hrs) (mm) ID1= 1 (0102): 4.97 + ID2= 2 (0001): 8.89 1.693 .50 26.02 _____ ID = 3 (0002): 9.07 1.698 .50 25.60 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. CALTR STANDHYD (0203) Area (ha)= .91 | ID= 1 DT= 5.0 min | Total Imp(%)= 50.00 Dir. Conn.(%)= 50.00IMPERVIOUS PERVIOUS (i) Surface Area Dep. Storage (mm)= 1.00 5.00 Average Slope (%)= 1.00 2.00 Length (m)= 77.90 25.00 Mannings n .013 .250 Max.Eff.Inten.(mm/hr)= 131.71 over (min) 5.00 10.00 Storage Coeff. (min)= 1.97 (ii) 6.74 (ii) 10.00 Unit Hyd. Tpeak (min)= 5.00 Unit Hyd. peak (cms)= .31 .14 *TOTALS* .16 .167 (iii) PEAK FLOW (cms)= .02 TIME TO PEAK (hrs)= .50 . 75 .50 22.90 RINOFF VOLUME (mm) = 38.20 7.61 TOTAL RAINFALL (mm)= 39.20 39.20 39.20 RUNOFF COEFFICIENT = .97 .19 .58 **** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP! (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 68.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT. (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY. | ADD HYD (0004) | 1 + 2 = 3 AREA QPEAK TPEAK R.V. (ha) (cms) (hrs) (mm) ID1= 1 (0002): .50 25.60 9.07 1.698 + ID2= 2 (0203): .91 .167 .50 22.90 _____ ID = 3 (0004): 9.98 1.865 .50 25.35 NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY. RESERVOIR (0507) IN= 2---> OUT= 1 OUTFLOW DT= 5.0 min STORAGE OUTFLOW STORAGE (cms) (ha.m.) (cms) (ha.m.) .0000 .0000 .0841 .2018

ID = 3 (0001): 8.89 1.693 .50 26.02

```
0104
                               .0936
                                          .2110
                                                   .2412
                      .0114
                               .1106
                                          .3271
                                                   .2824
                      .0123
                               .1280
                                          .4574
                                                   . 3700
                      0132
                               .1459
                                          .5576
                                                   .4643
                      .0140
                               .1641
                                         2.1858
                                                   .5137
                      .0390
                                         5.1234
                                                   .5648
                               .1828
                          AREA
                                 OPEAK
                                          TPEAK
                                                    R V
                          (ha)
                                 (cms)
                                          (hrs)
                                                    (mm)
   INFLOW : ID= 2 (0004)
    OUTFLOW: ID= 1 (0507)
                                                   25.12
                                          1.08
               PEAK FLOW REDUCTION [Qout/Qin](%)= 9.11
               TIME SHIFT OF PEAK FLOW
                                        (min)= 35.00
               MAXIMUM STORAGE USED
                                        (ha.m.)= .2286
 CALTB
                 Area (ha)= 5.09 Curve Number (CN)= 65.0
 NASHYD (0101) |
ID= 1 DT= 5.0 min |
                        (mm)= 8.00 # of Linear Res.(N)= 3.00
                 Ia
----- U.H. Tp(hrs)= .42
   Unit Hyd Qpeak (cms)=
   PEAK FLOW
                         .092 (i)
                 (cms)=
   TIME TO PEAK (hrs)= 1.083
   RUNOFF VOLUME (mm) = 5.794
   TOTAL RAINFALL (mm)= 39.198
    RUNOFF COEFFICIENT = .148
    (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
| ADD HYD (0006) |
 1 + 2 = 3
                       AREA OPEAK
                                     TPEAK
                                             R.V.
                       (ha)
                              (cms)
                                      (hrs)
                                              (mm)
      ID1= 1 (0507): 9.98
+ ID2= 2 (0101): 5.09
       ID1= 1 (0507):
                             .170
                                     1.08 25.12
                              .092
                                     1.08
                                            5.79
        _____
        ID = 3 (0006): 15.07 .262
                                    1.08 18.60
   NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
 *******
 ** SIMULATION NUMBER: 4 ** 10-year 1-hour AES
 *******
   READ STORM
                   Filename: S:\Projects\2014\14118\Hydrotechnical\
                           3-FSR Submission_March 2018\V02\V02\Storms\
                           AES_1H_10Y.STM
 Ptotal= 48.30 mm
                  Comments: 10yr/lhr Fergus Shand Dam 2007 (AES Curv
             TIME
                  RAIN
                           TIME
                                RAIN
                                        TIME RAIN
             hrs mm/hr
                          hrs mm/hr
                                       hrs mm/hr
                                                     hrs mm/hr
              .08
                    .00
                           .42 86.94
                                         .75 46.37
                                                     1.08 5.80
                                        .83 28.98
              .17
                    5.80
                           .50 162.29
               .25 17.39
                           .58 86.94
                                        .92 17.39
              .33 46.37 | .67 69.55 | 1.00
                                             5.80
| CALIB |
```

```
| NASHYD (0102) | Area (ha)= .18 Curve Number (CN)= 65.0
|ID= 1 DT= 5.0 min |
                    Ia
                          (mm)= 8.00 # of Linear Res.(N)= 3.00
                     U.H. Tp(hrs)=
                                    .06
    Unit Hyd Qpeak (cms)=
    PEAK FLOW
                            .010 (i)
    TIME TO PEAK
                  (hrs)= .583
    RUNOFF VOLUME (mm) = 7.870
    TOTAL RAINFALL (mm) = 48.302
    RUNOFF COEFFICIENT = .163
    (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
 CALIB
 STANDHYD (0202)
                    Area (ha)= 4.67
ID= 1 DT= 5.0 min | Total Imp(%)= 70.00 Dir. Conn.(%)= 55.00
                            IMPERVIOUS PERVIOUS (i)
    Surface Area
                    (ha)=
                               3.27
                                           1.40
    Dep. Storage
                    (mm)=
                               1.00
                                           5.00
    Average Slope
                    (%)=
                               1.00
                                           2.00
    Length
                             176.40
                                          40.00
                     (m)=
                                           .250
    Mannings n
                              .013
    Max.Eff.Inten.(mm/hr)=
             over (min)
                              5.00
                                          10.00
    Storage Coeff. (min)=
                               2.96 (ii)
                                           7.52 (ii)
    Unit Hyd. Tpeak (min) =
                               5.00
                                          10.00
    Unit Hyd. peak (cms)=
                                . 28
                                           .13
                                                       *TOTALS*
    PEAK FLOW
                   (cms)=
                               1.05
                                            .19
                                                        1.132 (iii)
    TIME TO PEAK (hrs)=
                                . 50
                                            . 67
                                                         . 50
    RUNOFF VOLUME (mm) =
TOTAL RAINFALL (mm) =
                                                        33 31
                              47 30
                                          16 22
                                                        48.30
                              48.30
                                          48.30
    RUNOFF COEFFICIENT =
                               .98
                                           .34
                                                          .69
***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!
      (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
           CN* = 68.0 Ia = Dep. Storage (Above)
     (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
          THAN THE STORAGE COEFFICIENT.
    (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
 CALIB
 STANDHYD (0201)
                           (ha) = 4.22
                     Area
                    Total Imp(%)= 70.00 Dir. Conn.(%)= 55.00
ID= 1 DT= 5.0 min |
                            IMPERVIOUS
                                        PERVIOUS (i)
    Surface Area
                    (ha)=
                               2.95
                                           1.27
    Dep. Storage
                    (mm) =
                               1 00
                                           5 00
                               1 00
                                           2 00
    Average Slope
                    (%)=
    Length
                     (m)=
                             167.70
                                          40.00
    Mannings n
                               .013
                                           .250
    Max.Eff.Inten.(mm/hr)=
                             162.29
                                          10.00
             over (min)
    Storage Coeff. (min)=
                               2.87 (ii)
                                          7.43 (ii)
    Unit Hyd. Tpeak (min)=
                               5.00
                                          10.00
    Unit Hyd. peak (cms)=
                                           .13
                                                       *TOTALS*
    PEAK FLOW
                   (cms)=
                                                        1.029 (iii)
    TIME TO PEAK
                  (hrs)=
                                .50
                                            .67
                                                          .50
    RUNOFF VOLUME
                               47.30
                                          16.22
                                                        33.31
                  (mm) =
    TOTAL RAINFALL (mm)=
                               48.30
                                          48.30
                                                         48.30
```

RUNOFF COEFFICIENT = .98 .34 .69

**** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 68.0 Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

ADD HYD (0001)				
1 + 2 = 3	AREA	QPEAK	TPEAK	R.V.
	(ha)	(cms)	(hrs)	(mm)
ID1= 1 (0202):	4.67	1.132	.50	33.31
+ ID2= 2 (0201):	4.22	1.029	.50	33.31
=======================================				
ID = 3 (0001):	8.89	2.162	.50	33.31

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

ADD HYD (0002)				
1 + 2 = 3	AREA	QPEAK	TPEAK	R.V.
	(ha)	(cms)	(hrs)	(mm)
ID1= 1 (0102):	.18	.010	.58	7.87
+ ID2= 2 (0001):	8.89	2.162	.50	33.31
============				
ID = 3 (0002):	9.07	2.170	.50	32.81

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

STA	IB NDHYD (0203) 1 DT= 5.0 min		(ha)= Imp(%)=			Conn.(%)= 50.00	ı
			IMPERVIO	ous	PERVIO	JS (i)		
	Surface Area	(ha)=	. 4	5	. 40	5		
	Dep. Storage	(mm) =	1.0)	5.00)		
	Average Slope	(%)=	1.0)	2.00)		
	Length	(m) =	77.9)	25.00)		
	Mannings n	=	.01	3	. 250)		
	Max.Eff.Inten.(m							
			5.0					
	Storage Coeff.							
	Unit Hyd. Tpeak							
	Unit Hyd. peak	(cms)=	. 3:	2	. 15	5		
							TOTALS	
	PEAK FLOW				.03		.211	(iii)
	TIME TO PEAK	(hrs)=	.5)	. 6	7	.50	
	RUNOFF VOLUME	(mm) =	47.3)	11.5	2	29.40	
	TOTAL RAINFALL				48.30)	48.30	
	RUNOFF COEFFICIE	ENT =	.9	3	. 2	4	.61	

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
- CN* = 68.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
 THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

ADD HYD (0004)				
1 + 2 = 3	AREA	QPEAK	TPEAK	R.V.
	(ha)	(cms)	(hrs)	(mm)
ID1= 1 (0002):	9.07	2.170	.50	32.81
+ ID2= 2 (0203):	.91	.211	.50	29.40
=======================================				
TD = 3 (0004):	9.98	2.382	. 50	32.50

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

PROPERTORS (AFAZ)					
RESERVOIR (0507)					
IN= 2> OUT= 1					
DT= 5.0 min	OUTFLOW	STORAGE	OUTFLOW	STORAGE	
	(cms)	(ha.m.)	(cms)	(ha.m.)	
	.0000	.0000	.0841	.2018	
	.0104	.0936	.2110	.2412	
	.0114	.1106	.3271	.2824	
	.0123	.1280	.4574	.3700	
	.0132	.1459	.5576	.4643	
	.0140	.1641	2.1858	.5137	
	.0390	.1828	5.1234	.5648	
	AR	EA QPEAK	TPEAK	R.V.	
	(h	a) (cms)	(hrs)	(mm)	
INFLOW : ID= 2 (0	004) 9.	98 2.38	.50	32.50	
OUTFLOW: ID= 1 (0	507) 9.	98 .31	1.00	32.27	

PEAK FLOW REDUCTION [Qout/Qin](%)= 13.16

TIME SHIFT OF PEAK FLOW (min)= 30.00

MAXIMUM STORAGE USED (ha.m.)= .2778

U.H. Tp(hrs) = .42

Unit Hyd Qpeak (cms)= .463

PEAK FLOW (cms)= .145 (i)
TIME TO PEAK (hrs)= 1.083
RUNOFF VOLUME (mm)= 9.172
TOTAL RAINFALL (mm)= 48.302
RUNOFF COEFFICIENT = .190

(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

ADD HYD (0006)				
1 + 2 = 3	AREA	QPEAK	TPEAK	R.V.
	(ha)	(cms)	(hrs)	(mm)
ID1= 1 (0507):	9.98	.313	1.00	32.27
+ ID2= 2 (0101):	5.09	.145	1.08	9.17
=======================================				
ID = 3 (0006):	15.07	.459	1.00	24.47

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

** SIMULATION NUMBER: 5 ** 25-year 1-hour AES

READ STORM Filename: S:\Projects\2014\14118\Hydrotechnical\ 3-FSR Submission_March 2018\VO2\VO2\Storms\ AES 1H 25Y.STM Comments: 25yr/lhr Fergus Shand Dam 2007 (AES Curv Ptotal= 59.70 mm TIME RAIN TIME RAIN | TIME RAIN | TIME hrs mm/hr hrs mm/hr hrs mm/hr hrs mm/hr .08 .00 .42 107.46 .75 57.31 1.08 7.16

.17 7.16 .50 200.59 .83 35.82 .25 21.49 .58 107.46 .92 21.49 .33 57.31 .67 85.97 1.00 7.16

Unit Hyd Qpeak (cms)= .115

PEAK FLOW (cms)= .015 (i)
TIME TO PEAK (hrs)= .583
RUNOFF VOLUME (mm)= 12.168
TOTAL RAINFALL (mm)= 59.698
RUNOFF COEFFICIENT = .204

----- U.H. Tp(hrs)= .06

(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

STANDHYD (0202) Area (ha)= 4.67 IMPERVIOUS PERVIOUS (i) Surface Area (ha)= 3.27 1.40 Dep. Storage (mm) = 1.00 5.00 1.00 (%)= 2.00 Average Slope 176.40 40.00 Length (m) =Mannings n .013 .250 Max.Eff.Inten.(mm/hr)= 200.59 5.00 over (min) 10.00 Storage Coeff. (min)= 2.72 (ii) 6.91 (ii) Unit Hyd. Tpeak (min)= 5.00 10.00 Unit Hyd. peak (cms)= . 29 .14 *TOTALS* . 29 PEAK FLOW 1.32 1.452 (iii) TIME TO PEAK (hrs)= .50 .67 .50 RUNOFF VOLUME (mm)= 23.35 TOTAL RAINFALL (mm)= 59.70 59.70 59.70 RUNOFF COEFFICIENT = .98 .72

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
- CN* = 68.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
 THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB						
CALLE (0201)	Ares	(ha)-	4 22			
STANDHYD (0201) D= 1 DT= 5.0 min	Total	(IId)=	70 00	Dir Co	nn (%)=	EE 00
				DII. CC)IIII. (%) =	33.00
Surface Area Dep. Storage Average Slope Length Mannings n		IMPERVI	OUS	PERVIOUS	(i)	
Surface Area	(ha) =	2.9	15	1.27		
Dep. Storage	(mm) =	1.0	10	5.00		
Average Slope	(%)=	1.0	10	2.00		
Length	(m) =	167.7	0	40.00		
Mannings n	=	.01	.3	.250		
May Eff Inten (mm /hr) =	200 5	. a	96 75		
Max.EII.IIIceii.(i	(min)	5 (10	10.75		
Storage Coeff	(min)=	2 6	4 (ii)	6.83 (ii)	
Unit Hyd Theak	(min)=	5.0	10	10.00		
Unit Hvd. peak	(cms)=	. 2	19	.14		
	(,				**	TOTALS*
Max.Eff.Inten.(over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak PEAK FLOW	(cms)=	1.1	.9	. 26		1.320 (iii)
PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL	(hrs)=	. 5				.50
RUNOFF VOLUME	(mm) =	58.7	0	.67 23.35 59.70		42.79 59.70
TOTAL RAINFALL	(mm) =	59.7	0	59.70		59.70
RUNOFF COEFFICI	ENT =	.9	8	.39		.72
(i) CN PROCED CN* = (ii) TIME STEP THAN THE: (iii) PEAK FLOW	68.0 I (DT) SHO STORAGE O	a = Dep. OULD BE S COEFFICIE	Storag MALLER NT.	e (Above OR EQUAL	<u> </u>	
(i) CN PROCEDI CN* = (ii) TIME STEP THAN THE : (iii) PEAK FLOW	68.0 1 (DT) SHO STORAGE C DOES NOT	a = Dep. DULD BE S COEFFICIE T INCLUDE	Storag MALLER NT. BASEFL	e (Above OR EQUAL OW IF ANY	·) 	
(i) CN PROCEDI CN* = (ii) TIME STEP THAN THE : (iii) PEAK FLOW	68.0 1 (DT) SHO STORAGE C DOES NOT	a = Dep. DULD BE S COEFFICIE T INCLUDE	Storag MALLER NT. BASEFL	e (Above OR EQUAL OW IF ANY	·) 	
(i) CN PROCEDI CN* = (ii) TIME STEP THAN THE : (iii) PEAK FLOW	68.0 1 (DT) SHO STORAGE C DOES NOT	a = Dep. DULD BE S COEFFICIE T INCLUDE	Storag MALLER NT. BASEFL	e (Above OR EQUAL OW IF ANY	·) 	
(i) CN PROCEDI CN* = (ii) TIME STEP THAN THE : (iii) PEAK FLOW	68.0 1 (DT) SHO STORAGE C DOES NOT	a = Dep. DULD BE S COEFFICIE T INCLUDE	Storag MALLER NT. BASEFL	e (Above OR EQUAL OW IF ANY	·) 	
(i) CN PROCED CN* = (ii) TIME STEP THAN THE: (iii) PEAK FLOW ADD HYD (0001) 1 + 2 = 3 ID1= 1 (02 + ID2= 2 (02)	68.0 I (DT) SHC STORAGE C DOES NOT	AREA (ha) 4.67 1 Dep. ACCA 4.22 1	Storag MALLER NT. BASEFL QPEAK (cms) .452 .320	PE (Above OR EQUAL OW IF ANY TPEAK (hrs) .50	R.V. (mm) 42.79 42.79	
(i) CN PROCEDI CN* = (ii) TIME STEP THAN THE: (iii) PEAK FLOW ADD HYD (0001) 1 + 2 = 3 IDl= 1 (02 + ID2= 2 (02)	02):	AREA (ha) 4.22 1	Storag MALLER NT. BASEFL QPEAK (cms) .452 .320	TPEAK (hrs) .50	R.V. (mm) 42.79 42.79	
(i) CN PROCED CN* = (ii) TIME STEP THAN THE: (iii) PEAK FLOW ADD HYD (0001) 1 + 2 = 3 ID1= 1 (02 + ID2= 2 (02)	02):	AREA (ha) 4.22 1	Storag MALLER NT. BASEFL QPEAK (cms) .452 .320	TPEAK (hrs) .50	R.V. (mm) 42.79 42.79	
(i) CN PROCED CN* = (ii) TIME STEP THAN THE: (iii) PEAK FLOW ADD HYD (0001) 1 + 2 = 3 IDl= 1 (02 + ID2= 2 (02)	02): 01):	AREA (ha) 4.67 4.22 1	Storag SMALLER ENT. BASEFL QPEAK (cms) 452 320	TPEAK (hrs) .50 .50	R.V. (mm) 42.79 42.79 42.79	
(i) CN PROCEDI CN* = (ii) TIME STEP THAN THE: (iii) PEAK FLOW ADD HYD (0001) 1 + 2 = 3 IDl= 1 (02) + ID2= 2 (02) ======== ID = 3 (00) NOTE: PEAK FLOW	02): 01):	AREA (ha) 4.67 4.22 1	Storag SMALLER ENT. BASEFL QPEAK (cms) 452 320	TPEAK (hrs) .50 .50	R.V. (mm) 42.79 42.79 42.79	
(i) CN PROCEDI CN* = (ii) TIME STEP THAN THE : (iii) PEAK FLOW ADD HYD (0001) 1 + 2 = 3 ID1= 1 (02: + ID2= 2 (02: ========== ID = 3 (00) NOTE: PEAK FLOW	08.0 1 (DT) SHC STORAGE C DOES NOT	AREA (ha) 4.67 1 4.22 1 8.89 2	Storag SMALLER NNT. BASEFL OPEAK (cms) .452 .320 .320772 BASEFL	e (Above OR EQUAL OW IF ANY TPEAK (hrs) .50 .50 .50 OWS IF AN	R.V. (mm) 42.79 42.79 42.79	
(i) CN PROCEDI CN* = (ii) TIME STEP THAN THE : (iii) PEAK FLOW ADD HYD (0001) 1 + 2 = 3 ID1= 1 (02: + ID2= 2 (02: ========== ID = 3 (00) NOTE: PEAK FLOW	08.0 1 (DT) SHC STORAGE C DOES NOT	AREA (ha) 4.67 1 4.22 1 8.89 2	Storag SMALLER NNT. BASEFL OPEAK (cms) .452 .320 .320772 BASEFL	e (Above OR EQUAL OW IF ANY TPEAK (hrs) .50 .50 .50 OWS IF AN	R.V. (mm) 42.79 42.79 42.79	
(i) CN PROCEDI CN* = (ii) TIME STEP THAN THE : (iii) PEAK FLOW ADD HYD (0001) 1 + 2 = 3 ID1= 1 (02 + ID2= 2 (02 ======== ID = 3 (00) NOTE: PEAK FLOW	08.0 1 (DT) SHC STORAGE C DOES NOT	AREA (ha) 4.67 1 4.22 1 8.89 2	Storag SMALLER NNT. BASEFL OPEAK (cms) .452 .320 .320772 BASEFL	e (Above OR EQUAL OW IF ANY TPEAK (hrs) .50 .50 .50 OWS IF AN	R.V. (mm) 42.79 42.79 42.79	
(i) CN PROCEDI CN* = (ii) TIME STEP THAN THE : (iii) PEAK FLOW ADD HYD (0001) 1 + 2 = 3 ID1= 1 (02 + ID2= 2 (02 ======== ID = 3 (00) NOTE: PEAK FLOW	08.0 1 (DT) SHC STORAGE C DOES NOT	AREA (ha) 4.67 1 4.22 1 8.89 2	Storag SMALLER NNT. BASEFL OPEAK (cms) .452 .320 .320772 BASEFL	e (Above OR EQUAL OW IF ANY TPEAK (hrs) .50 .50 .50 OWS IF AN	R.V. (mm) 42.79 42.79 42.79	
(i) CN PROCEDI CN* = (ii) TIME STEP THAN THE: (iii) PEAK FLOW ADD HYD (0001) 1 + 2 = 3 ID1= 1 (02 + ID2= 2 (02) NOTE: PEAK FLOW ADD HYD (0002) 1 + 2 = 3 ID1= 1 (01 + ID2= 2 (02)	08.0 1 (DT) SIG	AREA (ha)	Storag MALLER MA	TPEAK (hrs) .50 .50 .50 .50 TPEAK (hrs) .50 .50 .50 .50	R.V. (mm) 42.79 42.79 42.79 (mm) 12.17 42.79	
(i) CN PROCEDI CN* = (ii) TIME STEP THAN THE : (iii) PEAK FLOW ADD HYD (0001) 1 + 2 = 3 ID1= 1 (02 + ID2= 2 (02 ======== ID = 3 (00) NOTE: PEAK FLOW	08.0 1 (DT) STORAGE (DOES NOT)	AREA (ha)	Storag MALLER NNT. BASEFL COPEAK (cms) .452 .320 .452 .320 EASEFL COPEAK (cms) .015 .772	TPEAK (hrs) .50 .50 .50 .50 TPEAK (hrs) .50 .50 .50 .50	R.V. (mm) 42.79 42.79 42.79 (mm) 12.17 42.79	

Area (ha)= .91

(ha)=

(mm) =

(%)=

IMPERVIOUS

.46

1.00

1.00

Total Imp(%)= 50.00 Dir. Conn.(%)= 50.00

PERVIOUS (i)

.46

5.00

2.00

STANDHYD (0203)

Surface Area

Dep. Storage

Average Slope

ID= 1 DT= 5.0 min

	Length Mannings n	(m) =	77.90	25.00	
	Max.Eff.Inten.(n over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak	mm/hr)=	200.59	46.27	
	over	(min)	5.00	10.00	
	Storage Coeff.	(min)=	1.66 (ii)	5.69 (ii)	
	Unit Hyd. Tpeak	(min)=	5.00	10.00	
					TOTALS
	PEAK FLOW	(cms)=	. 25	.05	.269 (iii)
	TIME TO PEAK	(hrs)=	.50	.67	.50
	PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL	(mm) =	58.70	.05 .67 17.17 59.70	37.93
	TOTAL RAINFALL RUNOFF COEFFICIE	(mm) =	59.70 .98	59.70 .29	59.70 .64
					.04
****	* WARNING: STORAG	GE COEFF.	IS SMALLER TH	AN TIME STEP!	
	(i) CN PROCEDU	JRE SELECT	ED FOR PERVIO	US LOSSES:	
			= Dep. Stora		
	(ii) TIME STEP			OR EQUAL	
	THAN THE S		EFFICIENT.	LOW IF ANY	
	(TII) PEAK LTOW	DOES NOT	INCLUDE BASEF	LOW IF ANI.	
) HYD (0004)				
1	1 + 2 = 3	A	REA QPEAK	TPEAK F	R.V.
		(ha) (cms)	TPEAK F (hrs) (.50 42.	(mm)
	ID1= 1 (000	J2): 9	.07 2.786	.50 42.	. 18
	+ TDZ= Z (020	 	.91 .209 ========	.50 37. ========	. 53 ====
	ID = 3 (000)				
		54,.	.90 3.034	.50 41.	. 80
	NOTE: DEAK DION				. 80
	NOTE: PEAK FLOW				.80
		WS DO NOT	INCLUDE BASEF	LOWS IF ANY.	
		WS DO NOT	INCLUDE BASEF	LOWS IF ANY.	
RE	SERVOIR (0507)	WS DO NOT	INCLUDE BASEF	LOWS IF ANY.	
RE:	SERVOIR (0507) = 2> OUT= 1	WS DO NOT	INCLUDE BASEF	LOWS IF ANY.	OFFORME
RE:	SERVOIR (0507)	WS DO NOT	INCLUDE BASEF	LOWS IF ANY.	OFFORME
RE:	SERVOIR (0507) = 2> OUT= 1 = 5.0 min	WS DO NOT	INCLUDE BASEF	LOWS IF ANY.	OFFORME
RE:	SERVOIR (0507) = 2> OUT= 1 = 5.0 min	WS DO NOT	INCLUDE BASEF	LOWS IF ANY.	OFFORME
RE:	SERVOIR (0507) = 2> OUT= 1 = 5.0 min	WS DO NOT	INCLUDE BASEF	LOWS IF ANY.	OFFORME
RE	SERVOIR (0507) = 2> OUT= 1 = 5.0 min	WS DO NOT	INCLUDE BASEF	LOWS IF ANY.	OFFORME
RE:	SERVOIR (0507) = 2> OUT= 1 = 5.0 min	WS DO NOT	INCLUDE BASEF	LOWS IF ANY.	OFFORME
RE	SERVOIR (0507) = 2> OUT= 1 = 5.0 min	WS DO NOT	INCLUDE BASEF	LOWS IF ANY.	OFFORME
RE	SERVOIR (0507) = 2> OUT= 1 = 5.0 min	WS DO NOT	OW STORAGE) (ha.m.) 00 .0000 04 .0936 14 .1106 23 .1280 32 .1459 40 .1641 90 .1828	OUTFLOW (cms) (0841 2110 3271 4574 5576 2.1858 5.1234	STORAGE (ha.m.) .2018 .2412 .2824 .3700 .4643 .5137 .5648
RE	SERVOIR (0507) = 2> OUT= 1 = 5.0 min	OUTFL (cms .00 .01 .01 .01 .01 .01 .03	OW STORAGE) (ha.m.) 00 .0000 04 .0936 14 .1106 23 .1280 32 .1459 40 .1641 90 .1828	OUTFLOW (cms) . 0841 . 2110 . 3271 . 4574 . 5576 . 2.1858 . 5.1234	STORAGE (ha.m.) .2018 .2412 .2824 .3700 .4643 .5137 .5648
RE	SERVOIR (0507) = 2> OUT= 1 = 5.0 min	OUTFL (cms .00 .01 .01 .01 .01 .01 .03	OW STORAGE) (ha.m.) 00 .0000 04 .0936 14 .1106 23 .1280 32 .1459 40 .1641 90 .1828	OUTFLOW (cms) . 0841 . 2110 . 3271 . 4574 . 5576 . 2.1858 . 5.1234	STORAGE (ha.m.) .2018 .2412 .2824 .3700 .4643 .5137 .5648
RE	SERVOIR (0507) = 2> OUT= 1 = 5.0 min	OUTFL (cms .00 .01 .01 .01 .01 .01 .03	OW STORAGE) (ha.m.) 00 .0000 04 .0936 14 .1106 23 .1280 32 .1459 40 .1641 90 .1828	OUTFLOW (cms) . 0841 . 2110 . 3271 . 4574 . 5576 . 2.1858 . 5.1234	STORAGE (ha.m.) .2018 .2412 .2824 .3700 .4643 .5137 .5648
RE	SERVOIR (0507) = 2> OUT= 1 = 5.0 min	OUTFL (cms .00 .01 .01 .01 .01 .03 (0004) (0507)	OW STORAGE) (ha.m.) 00 .0000 04 .0936 14 .1106 23 .1280 32 .1459 40 .1641 90 .1828 AREA QP (ha) (cc) 9.98 3 9.98	OUTFLOW (cms) . 0841	STORAGE (ha.m.) .2018 .2412 .2824 .3700 .4643 .5137 .5648 R.V. (mm) 41.80 41.57
RE	SERVOIR (0507) = 2> OUT= 1	OUTFL (cms .00 .01 .01 .01 .01 .03 (0004) (0507)	OW STORAGE) (ha.m.) 00 .0000 04 .0936 14 .1106 23 .1269 32 .1459 40 .1641 90 .1828 AREA QP (ha) (cc 9.98 3 9.98 REDUCTION	OUTFLOW (cms) . 0841 . 2110 . 3271 . 4574 . 5576 . 2.1858 . 5.1234 EAK TPEAK ms) (hrs) .05 .50 .42 1.00 [Qout/Qin](%)=	STORAGE (ha.m.) .2018 .2412 .2824 .3700 .4643 .5137 .5648 R.V. (mm) 41.80 41.57
RE	SERVOIR (0507) = 2> OUT= 1 = 5.0 min	OUTFL (cms .00 .01 .01 .01 .01 .01 .03 (0004) (0507)	OW STORAGE) (ha.m.) 00 .0000 04 .0936 14 .1106 23 .1280 32 .1459 40 .1641 90 .1828 AREA QP (ha) (c: 9.98 3 9.98 REDUCTION OF PEAK FLOW	OUTFLOW (cms) .0841 .2110 .3271 .4574 .5576 .2.1858 .5.1234 EAK TPEAK ms) (hrs) .05 .50 .42 1.00 [Qout/Qin](%)= (min)=	STORAGE (ha.m.) .2018 .2412 .2824 .3700 .4643 .5137 .5648 R.V. (mm) 41.80 41.57 = 13.82 = 30.00
RE	SERVOIR (0507) = 2> OUT= 1 = 5.0 min	OUTFL (cms .00 .01 .01 .01 .01 .01 .03 (0004) (0507)	OW STORAGE) (ha.m.) 00 .0000 04 .0936 14 .1106 23 .1280 32 .1459 40 .1641 90 .1828 AREA QP (ha) (c: 9.98 3 9.98 REDUCTION OF PEAK FLOW	OUTFLOW (cms) . 0841 . 2110 . 3271 . 4574 . 5576 . 2.1858 . 5.1234 EAK TPEAK ms) (hrs) .05 .50 .42 . 1.00 [Qout/Qin](%)=	STORAGE (ha.m.) .2018 .2412 .2824 .3700 .4643 .5137 .5648 R.V. (mm) 41.80 41.57 = 13.82 = 30.00
RE;	SERVOIR (0507)	OUTFL (cms .00 .01 .01 .01 .01 .03 (0004) (0507)	OW STORAGE) (ha.m.) 00 .0000 04 .0936 14 .1106 23 .1280 32 .1459 40 .1641 90 .1828 AREA QP (ha) (cc 9.98 3 9.98 REDUCTION OF PEAK FLOW ORAGE USED	OUTFLOW (cms) (cms	STORAGE (ha.m.) .2018 .2412 .2824 .3700 .4643 .5137 .5648 R.V. (mm) 41.80 41.57 = 13.82 = 30.00
RE.	SERVOIR (0507)	OUTFL (cms .00 .01 .01 .01 .01 .03 (0004) (0507)	OW STORAGE) (ha.m.) 00 .0000 04 .0936 14 .1106 23 .1280 32 .1459 40 .1641 90 .1828 AREA QP (ha) (cc 9.98 3 9.98 REDUCTION OF PEAK FLOW ORAGE USED	OUTFLOW (cms) (cms	STORAGE (ha.m.) .2018 .2412 .2824 .3700 .4643 .5137 .5648 R.V. (mm) 41.80 41.57
RE. IN	SERVOIR (0507)	OUTFL (cms .00 .01 .01 .01 .01 .01 .03 (0004) (0507) EAR FLOW	OW STORAGE) (ha.m.) 00 .0000 04 .0936 14 .1106 23 .1280 32 .1459 40 .1641 90 .1828 AREA QP. (ha) (cc 9.98 3 9.98 3 9.98 PREDUCTION OF PEAK FLOW ORAGE USED	OUTFLOW (cms) .0841 .2110 .3271 .4574 .5576 .2.1858 .5.1234 EAK TPEAK ms) (hrs) .05 .50 .42 1.00 .(Qout/Qin](%)= (min)= (ha.m.)=	STORAGE (ha.m.) .2018 .2412 .2824 .3700 .4643 .5137 .5648 R.V. (mm) 41.80 41.57 = 13.82 = 30.00 = .3471
RE. IN	SERVOIR (0507)	OUTFL (cms .00 .01 .01 .01 .01 .01 .03 (0004) (0507) EAR FLOW	OW STORAGE) (ha.m.) 00 .0000 04 .0936 14 .1106 23 .1280 32 .1459 40 .1641 90 .1828 AREA QP. (ha) (cc 9.98 3 9.98 3 9.98 PREDUCTION OF PEAK FLOW ORAGE USED	OUTFLOW (cms) .0841 .2110 .3271 .4574 .5576 .2.1858 .5.1234 EAK TPEAK ms) (hrs) .05 .50 .42 1.00 .(Qout/Qin](%)= (min)= (ha.m.)=	STORAGE (ha.m.) .2018 .2412 .2824 .3700 .4643 .5137 .5648 R.V. (mm) 41.80 41.57 = 13.82 = 30.00 = .3471
RE. IN DT	SERVOIR (0507)	OUTFL (cms .00 .01 .01 .01 .01 .03 (0004) (0507) EAK FLOW LIME SHIFT AXIMUM ST	OW STORAGE) (ha.m.) 00 .0000 04 .0936 14 .1106 23 .1280 32 .1459 40 .1641 90 .1828 AREA QP (ha) (cc 9.98 3 9.98 REDUCTION OF PEAK FLOW ORAGE USED (ha)= 5.09 (mm)= 8.00	OUTFLOW (cms) OUTFLOW (cms) 0.841 2.2110 3.271 4.5576 2.1858 5.1234 EAK TPEAK ms) (hrs) .05 .50 .42 1.00 (quin) (ha.m.) =	STORAGE (ha.m.) .2018 .2412 .2824 .3700 .4643 .5137 .5648 R.V. (mm) 41.80 41.57 = 13.82 = 30.00 = .3471

Unit Hyd Qpeak (cms)= .463

TIME TO PEAK (hrs)= 1.000

(cms)= .225 (i)

PEAK FLOW

```
RUNOFF VOLUME (mm) = 14.180
   TOTAL RAINFALL (mm) = 59.698
   RUNOFF COEFFICIENT = .238
   (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
| ADD HYD (0006) |
1 + 2 = 3
                      AREA QPEAK TPEAK
                                          (mm)
                      (ha) (cms)
                                   (hrs)
      ID1= 1 (0507):
                      9.98
                             .422
                                    1.00 41.57
     + ID2= 2 (0101):
                     5.09
                           . 225
                                   1.00
                                         14.18
       _____
       ID = 3 (0006): 15.07 .647 1.00 32.32
   NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
 *******
 ** SIMULATION NUMBER: 6 ** 50-year 1-hour AES
 *******
                  Filename: S:\Projects\2014\14118\Hydrotechnical\
 READ STORM
                          3-FSR Submission_March 2018\VO2\VO2\Storms\
                          AES 1H 50Y.STM
Ptotal= 68.20 mm | Comments: 50yr/1hr Fergus Shand Dam 2007 (AES Curv
            TIME
                   RAIN
                         TIME RAIN | TIME RAIN | TIME RAIN
              hrs
                  mm/hr
                          hrs mm/hr
                                      hrs mm/hr
                                                    hrs mm/hr
              .08
                   .00
                          .42 122.76
                                       .75 65.47
                                                  1.08
                                                         8.18
              .17
                   8.18
                          .50 229.15
                                      .83 40.92
              .25
                  24.55
                          .58 122.76
                                       .92
                                           24.55
              .33 65.47 .67 98.21 1.00 8.18
 CALIB
 NASHYD (0102)
                 Area (ha)= .18 Curve Number (CN)= 65.0
                       (mm)= 8.00 # of Linear Res.(N)= 3.00
ID= 1 DT= 5.0 min | Ia
----- U.H. Tp(hrs)= .06
   Unit Hyd Qpeak (cms)= .115
   PEAK FLOW
                (cms)= .019 (i)
   TIME TO PEAK (hrs)= .583
   RUNOFF VOLUME (mm) = 15.786
   TOTAL RAINFALL (mm) = 68.198
   RUNOFF COEFFICIENT = .231
   (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
 CALIB
 STANDHYD (0202) | Area (ha)= 4.67
| ID= 1 DT= 5.0 min | Total Imp(%)= 70.00 Dir. Conn.(%)= 55.00
                       IMPERVIOUS PERVIOUS (i)
                 (ha)=
   Surface Area
                         3.27
                                    1.40
   Dep. Storage
                 ( mm ) =
                          1.00
                                     5.00
                                     2 00
   Average Slope
                 (%)=
                          1 00
                        176 40
                                    40.00
   Length
                 (m)=
   Mannings n
                         .013
                                     .250
```

Max.Eff.Inte		229.15	121.42		
С	ver (min)	5.00	10.00		
Storage Coef	f. (min)=	2.58	(ii) 6.55	(ii)	
Unit Hyd. Tp	eak (min)=	5.00	10.00		
Unit Hyd. pe	ak (cms)=	. 29	.14		
				TOTALS	
PEAK FLOW	(cms)=	1.52	.36	1.699	(iii)
TIME TO PEAK	(hrs)=	.50	. 67	.50	
RUNOFF VOLUM	E (mm)=	67.20	29.11	50.06	
TOTAL RAINFA	LL (mm)=	68.20	68.20	68.20	
RUNOFF COEFF	ICIENT =	.99	. 43	.73	

**** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

- THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB STANDHYD (0201) ID= 1 DT= 5.0 min		(ha)= Imp(%)=		Conn.(%)= 55.	00
		IMPERVIOU	JS PERVIOU	JS (i)	
Surface Area	(ha)=	2.95	1.27	,	
Dep. Storage	(mm) =	1.00	5.00)	
Average Slope	(%)=	1.00	2.00)	
Length	(m)=	167.70	40.00)	
Mannings n	=	.013	. 250)	
	(min)	5.00	10.00)	
Storage Coeff.					
Unit Hyd. Tpeak					
Unit Hyd. peak	(cms)=	. 29	.14		
	, ,		2.5	*TOTAL	
PEAK FLOW					3 (iii)
TIME TO PEAK		.50	. 67		
RUNOFF VOLUME	. ,	67.20			
TOTAL RAINFALL	. ,				
RUNOFF COEFFICI	ENT =	.99	. 43	.7	13

**** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 68.0 Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.

(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

| ADD HYD (0001) | 1 + 2 = 3 AREA QPEAK TPEAK (ha) (cms) (hrs) (mm) ID1= 1 (0202): 4.67 1.699 50.06 .50 + ID2= 2 (0201): 4.22 1.543 .50 50.06

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

ID = 3 (0001): 8.89 3.242

.50 50.06

| ADD HYD (0002) |

1 +	2 = 3		AREA	QPEAK	TPEAK	R.V.
			(ha)	(cms)	(hrs)	(mm)
	ID1= 1	(0102):	.18	.019	.58	15.79
+	ID2= 2	(0001):	8.89	3.242	.50	50.06
	======					======
	ID = 3	(0002):	9.07	3.260	.50	49.38

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

CALIB STANDHYD (0203) ID= 1 DT= 5.0 min		(ha)= Imp(%)=		Conn.(%)= 50.00)
		IMPERVIO	US PERVIOUS	S (i)	
Surface Area	(ha)=	.46	.46		
Dep. Storage	(mm) =	1.00	5.00		
Average Slope	(%)=	1.00	2.00		
Length	(m) =	77.90	25.00		
Mannings n	=	.013	.250		
Max.Eff.Inten.(r		229.15 5.00			
Storage Coeff.	(min)=	1.58	(ii) 5.40	(ii)	
Unit Hyd. Tpeak					
Unit Hyd. peak	(cms)=	.33	.16		
				TOTALS	•
PEAK FLOW	(cms)=	.28	.06	.313	(iii)
TIME TO PEAK	(hrs)=	.50	.67	.50	
RUNOFF VOLUME	(mm) =	67.20	21.86	44.52	
TOTAL RAINFALL	(mm) =	68.20	68.20	68.20	
RUNOFF COEFFICIA	ENT =	.99	.32	.65	

***** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES: CN* = 68.0 Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

ADD HYD (0004)				
1 + 2 = 3	AREA	QPEAK	TPEAK	R.V.
	(ha)	(cms)	(hrs)	(mm)
ID1= 1 (0002):	9.07	3.260	.50	49.38
+ ID2= 2 (0203):	.91	.313	.50	44.52
=============				
ID = 3 (0004):	9.98	3.573	.50	48.93

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

RESERVOIR (0507) IN= 2> OUT= 1				
DT= 5.0 min	OUTFLOW	STORAGE	OUTFLOW	STORAGE
	(cms)	(ha.m.)	(cms)	(ha.m.)
	.0000	.0000	.0841	.2018
	.0104	.0936	.2110	.2412
	.0114	.1106	.3271	. 2824
	.0123	.1280	.4574	.3700
	.0132	.1459	.5576	.4643
	.0140	.1641	2.1858	.5137
	.0390	.1828	5.1234	.5648

QPEAK

TPEAK

R.V.

AREA

```
(ha)
                                     (hrs)
                                              (mm)
                              (cms)
   INFLOW : ID= 2 (0004)
                       9.98
                               3.57
                                       .50
                                              48.93
   OUTFLOW: ID= 1 (0507)
                       9.98
                               .49
                                      1.00
                                              48.70
              PEAK FLOW REDUCTION [Qout/Qin](%)= 13.74
             TIME SHIFT OF PEAK FLOW
                                     (min) = 30.00
             MAXIMUM STORAGE USED
                                    (ha.m.)= .4025
 NASHYD (0101) Area (ha)= 5.09 Curve Number (CN)= 65.0
|ID= 1 DT= 5.0 min |
                      (mm)= 8.00 # of Linear Res.(N)= 3.00
                Ia
----- U.H. Tp(hrs)= .42
   Unit Hyd Qpeak (cms)= .463
   PEAK FLOW
               (cms)= .292 (i)
   TIME TO PEAK (hrs)= 1.000
   RUNOFF VOLUME (mm) = 18.396
   TOTAL RAINFALL (mm) = 68.198
   RUNOFF COEFFICIENT = .270
   (i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
ADD HYD (0006)
 1 + 2 = 3
                     AREA QPEAK
                                  TPEAK
                                         R.V.
                     (ha) (cms)
                                  (hrs)
                                         (mm)
      ID1= 1 (0507):
                     9.98
                           .491
                                  1.00
                                        48.70
     + ID2= 2 (0101):
                   5.09
                          .292
                                  1.00 18.40
       _____
      ID = 3 (0006): 15.07 .783 1.00 38.47
   NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.
 *******
 ** SIMULATION NUMBER: 7 ** 100-year 1-hour AES
 *******
  READ STORM
                Filename: S:\Projects\2014\14118\Hydrotechnical\
                       3-FSR Submission_March 2018\VO2\VO2\Storms\
                         AES 1H 100Y.STM
Ptotal= 76.60 mm
                Comments: 100yr/lhr Fergus Shand Dam 2007 (AES Cur
            TIME
                 RAIN
                        TIME
                             RAIN
                                    TIME RAIN
                                                TIME
            hrs mm/hr
                        hrs mm/hr
                                    hrs mm/hr
                                                hrs mm/hr
             .08
                   .00
                         .42 137.88
                                    .75 73.54
                                                1.08 9.19
             .17
                9.19
                        .50 257.38
                                    .83 45.96
                 27.58
                        .58 137.88
                                     .92 27.58
            .33 73.54 .67 110.30 1.00 9.19
 CALIB
----- U.H. Tp(hrs)= .06
   Unit Hyd Qpeak (cms)= .115
   PEAK FLOW
               (cms)=
                      .024 (i)
   TIME TO PEAK (hrs)= .583
```

RUNOFF VOLUME (mm)= 19.661 TOTAL RAINFALL (mm)= 76.601 RUNOFF COEFFICIENT = .257

(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALIB STANDHYD (0202) ID= 1 DT= 5.0 min		(ha)= Imp(%)=		Conn.(%)= 55.0	00
		IMPERVIOU	JS PERVIOU	S (i)	
Surface Area	(ha)=	3.27	1.40		
Dep. Storage	(mm) =	1.00	5.00		
Average Slope	(%)=	1.00	2.00		
Length	(m) =	176.40	40.00		
Mannings n	=	.013	.250		
Max.Eff.Inten.(
	. ,	5.00			
Storage Coeff.				(ii)	
Unit Hyd. Tpeak	(min) =	5.00	10.00		
Unit Hyd. peak	(cms)=	.30	.15		
				TOTALS	·
PEAK FLOW	(cms)=	1.72	. 44	1.948	(iii)
TIME TO PEAK	(hrs)=	.50	.67	.50	ı
RUNOFF VOLUME	(mm) =	75.60	35.10	57.37	,
TOTAL RAINFALL	(mm) =	76.60	76.60	76.60	ı
RUNOFF COEFFICI	ENT =	.99	.46	.75	i

**** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
- $CN^* = 68.0$ Ia = Dep. Storage (Above)
- (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
- THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

CALI	!								
	DHYD (0201)		(ha)=						
ID= 1	DT= 5.0 min	Total	Imp(%)= '	70.00	Dir. (Conn.(%)=	55.00)	
			IMPERVIOU	JS PE	RVIOUS	S (i)			
St	urface Area	(ha)=	2.95		1.27				
De	ep. Storage	(mm) =	1.00		5.00				
A٦	verage Slope	(%)=	1.00		2.00				
Le	ength	(m)=	167.70		40.00				
Ma	annings n	=	.013		.250				
Ma	ax.Eff.Inten.(r	nm/hr)=	257.38	1	47.19				
	over	(min)	5.00		10.00				
St	torage Coeff.	(min)=	2.39	(ii)	6.18	(ii)			
Uı	nit Hyd. Tpeak	(min)=	5.00		10.00				
Uı	nit Hyd. peak	(cms)=	.30		.15				
						1	OTALS	r	
PI	EAK FLOW	(cms)=	1.56		.40		1.769	(iii)	
T	IME TO PEAK	(hrs)=	.50		. 67		.50	` '	
	UNOFF VOLUME				35.10		57.37		
	OTAL RAINFALL	. ,			76.60		76.60		
	INORE CORRETCIA	. ,			46		75		

**** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
- CN* = 68.0 Ia = Dep. Storage (Above)

 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
 THAN THE STORAGE COEFFICIENT.

(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

ADD HYD (0001)				
1 + 2 = 3	AREA	QPEAK	TPEAK	R.V.
	(ha)	(cms)	(hrs)	(mm)
ID1= 1 (0202):	4.67	1.948	.50	57.37
+ ID2= 2 (0201):	4.22	1.769	.50	57.37
============				
ID = 3 (0001):	8.89	3.717	.50	57.37

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

ADD HYD (0002)					
1 + 2 = 3	AREA	QPEAK	TPEAK	R.V.	
	(ha)	(cms)	(hrs)	(mm)	
ID1= 1 (0102):	.18	.024	.58	19.66	
+ ID2= 2 (0001):	8.89	3.717	.50	57.37	
TD = 3 (0002):	9.07	3.741	. 50	56.62	

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

CALIB							
STANDHYD (0203)	Area	(ha)=	.91				
ID= 1 DT= 5.0 min	Total	Imp(%)=	50.00	Dir. 0	Conn.(%)=	50.00)
		IMPERVIO	US	PERVIOUS	S (i)		
Surface Area	(ha)=	.46		.46			
Dep. Storage	(mm) =	1.00		5.00			
Average Slope	(%)=	1.00		2.00			
Length	(m) =	77.90		25.00			
Mannings n	=	.013		.250			
Max.Eff.Inten.(mm/hr)=	257.38		73.44			
over	(min)	5.00		10.00			
Storage Coeff.	(min) =	1.51	(ii)	5.15	(ii)		
Unit Hyd. Tpeak	(min) =	5.00		10.00			
Unit Hyd. peak	(cms)=	.33		.16			
					T	OTALS	
PEAK FLOW	(cms)=	.32		.08		.357	(iii)
TIME TO PEAK	(hrs)=	.50		.67		.50	
RUNOFF VOLUME	(mm) =	75.60		26.82		51.21	
TOTAL RAINFALL	(mm) =	76.60		76.60		76.60	
RUNOFF COEFFICI	ENT =	.99		. 35		.67	

**** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
 CN* = 68.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
- THAN THE STORAGE COEFFICIENT.
- (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

ADD HYD (0004)				
1 + 2 = 3	AREA	QPEAK	TPEAK	R.V.
	(ha)	(cms)	(hrs)	(mm)
ID1= 1 (0002):	9.07	3.741	.50	56.62
+ ID2= 2 (0203):	.91	.357	.50	51.21
	======			

ID = 3 (0004): 9.98 4.098 .50 56.13

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

RESERVOIR (0507)						
IN= 2> OUT= 1 DT= 5.0 min		TEL OM	STORAGE	l orimi	T OM	CHODACE
DT= 5.0 min			(ha.m.)			(ha.m.)
		.0000	.0000	. (()	0841	.2018
		.0104	.0936		2110	.2412
		.0114	.1106		3271	.2824
		.0123	.1280		1574	.3700
		.0132	.1459		5576	. 4643
		.0140		2.1		.5137
		.0390	.1828	5.1	1234	.5648
		ARE	A QPE	AK TI	PEAK	R.V.
		(ha) (cms	s) (ł	nrs)	(mm)
INFLOW : ID= 2	2 (0004)	9.9	8 4.1	L 0	.50	56.13
OUTFLOW: ID= I	1 (0507)	9.9	8 .5	55 1	1.00	55.90
	DEAK E	I.OW PF	DUCTION [Out/Oin	1(%)= 13	8 49
			AK FLOW			
			USED			
CALIB	1					
NASHYD (0101)	 Area	(ha)	= 5.09	Curve N	Jumber	(CN) = 65.0
D= 1 DT= 5.0 min	Ia	(mm)	= 8.00	# of Li	inear Re	es.(N)= 3.00
	U.H.	Tp(hrs)	= .42			
Unit Hyd Qpeal	c (cms)=	.463				
PEAK FLOW	(cms)=	.364	(i)			
TIME TO PEAK	(hrs)=	1.000				
RUNOFF VOLUME	(mm) =	22.913				
TOTAL RAINFALI						
RUNOFF COEFFIC	CIENT =	. 299				
(i) PEAK FLOW	DOES NOT	TMCTIDE	DACEPTOW	TE ANV		
(I) FEAR FLOW	DOES NOT	INCLUDE	DASEFLOW	IF MNI.		
*DD IND (0006)					R.V.	
ADD HYD (0006)		ADEA	ODEAR			
ADD HYD (0006) 1 + 2 = 3		AREA	QPEAK	TPEAK (hrs)		
ADD HYD (0006) 1 + 2 = 3	<u> </u>	(ha)	(cms)	(hrs)	(mm)	
ADD HYD (0006) 1 + 2 = 3	<u> </u>	(ha)	(cms)	(hrs)		
ADD HYD (0006) 1 + 2 = 3 ID1= 1 (0 + ID2= 2 (0	 0507): 0101):	(ha) 9.98 5.09	(cms)	(hrs) 1.00 1.00	(mm) 55.90 22.91)
ADD HYD (0006) 1 + 2 = 3 ID1= 1 (0 + ID2= 2 (0	 0507): 0101): =======	(ha) 9.98 5.09	(cms) .553 .364	(hrs) 1.00 1.00	(mm) 55.90 22.91)
ADD HYD (0006) 1 + 2 = 3 ID1= 1 (0 + ID2= 2 (0	 0507): 0101): 	(ha) 9.98 5.09 ====== 15.07	(cms) .553 .364 ======	(hrs) 1.00 1.00 	(mm) 55.90 22.91 ======)
ADD HYD (0006) 1 + 2 = 3 	 0507): 0101): 	(ha) 9.98 5.09 ====== 15.07	(cms) .553 .364 ======	(hrs) 1.00 1.00 	(mm) 55.90 22.91 ======)

** SIMULATION NUMBER: 8 ** Regional Storm (Hurricane Hazel) *******

READ STORM Ptotal=212.00 mm

Filename: S:\Projects\2014\14118\Hydro

technical\0-Working\VO2\VO2\Storms\Hazel.stm

Comments: * Regional Storm - 12 Hour HAZEL

TIME	RAIN	TIME	RAIN	TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	hrs	mm/hr	hrs	mm/hr
.50	4.00	3.50	12.00	6.50	22.00	9.50	50.00
1.00	8.00	4.00	12.00	7.00	26.00	10.00	56.00
1.50	4.00	4.50	16.00	7.50	12.00	10.50	38.00
2.00	4.00	5.00	18.00	8.00	12.00	11.00	38.00
2.50	6.00	5.50	12.00	8.50	12.00	11.50	14.00
3.00	8.00	6.00	14.00	9.00	14.00	12.00	12.00

NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.

		TR	ANSFORMEI	HYETOGE	RAPH	_	
TIME	RAIN	TIME	RAIN	TIME	RAIN	TIME	RAIN
hrs	mm/hr	hrs	mm/hr	hrs	mm/hr	hrs	mm/hr
.083	4.00	3.083	12.00	6.083	22.00	9.08	50.00
.167	4.00	3.167	12.00	6.167	22.00	9.17	50.00
.250	4.00	3.250	12.00	6.250	22.00	9.25	50.00
.333	4.00	3.333	12.00	6.333	22.00	9.33	50.00
.417	4.00	3.417	12.00	6.417	22.00	9.42	50.00
.500	4.00	3.500	12.00	6.500	22.00	9.50	50.00
.583	8.00	3.583	12.00	6.583	26.00	9.58	56.00
.667	8.00	3.667	12.00	6.667	26.00	9.67	56.00
.750	8.00	3.750	12.00	6.750	26.00	9.75	56.00
.833	8.00	3.833	12.00	6.833	26.00	9.83	56.00
.917	8.00	3.917	12.00	6.917	26.00	9.92	56.00
1.000	8.00	4.000	12.00	7.000	26.00	10.00	56.00
1.083	4.00	4.083	16.00	7.083	12.00	10.08	38.00
1.167	4.00	4.167	16.00	7.167	12.00	10.17	38.00
1.250	4.00	4.250	16.00	7.250	12.00	10.25	38.00
1.333	4.00	4.333	16.00	7.333	12.00	10.33	38.00
1.417	4.00	4.417	16.00	7.417	12.00	10.42	38.00
1.500	4.00	4.500	16.00	7.500	12.00	10.50	38.00
1.583	4.00	4.583	18.00	7.583	12.00	10.58	38.00
1.667	4.00	4.667	18.00	7.667	12.00	10.67	38.00
1.750	4.00	4.750	18.00	7.750	12.00	10.75	38.00
1.833	4.00	4.833	18.00	7.833	12.00	10.83	38.00
1.917	4.00	4.917	18.00	7.917	12.00	10.92	38.00
2.000	4.00	5.000	18.00	8.000	12.00	11.00	38.00
2.083	6.00 6.00	5.083 5.167	12.00 12.00	8.083 8.167	12.00 12.00	11.08	14.00 14.00
2.167	6.00	5.250	12.00	8.250	12.00	11.17	14.00
2.333	6.00	5.333	12.00	8.333	12.00	11.23	14.00
2.333	6.00	5.417	12.00	8.417	12.00	11.33	14.00
2.500	6.00	5.500	12.00	8.500	12.00	11.50	14.00
2.583	8.00	5.583	14.00	8.583	14.00	11.58	12.00
2.667	8.00	5.667	14.00	8.667	14.00	11.67	12.00
2.750	8.00	5.750	14.00	8.750	14.00	11.75	12.00
2.833	8.00	5.833	14.00	8.833	14.00	11.83	12.00
2.917	8.00	5.917	14.00	8.917	14.00	11.92	12.00
3.000	8.00	6.000	14.00	9.000	14.00	12.00	12.00

Unit Hyd Qpeak (cms)= .115

PEAK FLOW (cms)= .022 (i)
TIME TO PEAK (hrs)= 10.000
RUNOFF VOLUME (mm)= 137.473
TOTAL RAINFALL (mm)= 212.000
RUNOFF COEFFICIENT = .648

(i) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

	-				
CALIB	I				
STANDHYD (0202) ID= 1 DT= 5.0 min	Area	(ha)=	4.67		
ID= 1 DT= 5.0 min	Total	Imp(%)=	70.00	Dir. Conn.(%)= 55.00
					-,
		IMPERVIOU	JS	PERVIOUS (i)	
Surface Area	(ha)=	3.27		1.40	
Dep. Storage	(mm) =	1.00		5.00	
Average Slope	(%)=	1.00		2.00	
Length	(m)=	176.40		40.00	
Surface Area Dep. Storage Average Slope Length Mannings n	=	.013		.250	
Max.Eff.Inten. over Storage Coeff. Unit Hyd. Tpeak Unit Hyd. peak	(mm/hr)=	56.00		81.45	
ove	r (min)	5.00		15.00	
Storage Coeff.	(min)=	4.53	(11)	12.19 (11)	
Unit Hyd. Tpear	< (min)=	5.00		15.00	
					TOTALS
DEAK ELOM	(am a) -	40		21	*TOTALS*
PEAK FLOW	(Cilis) =	10.00		10.00	10 00
DIMORE VOLUME	(IIIS)=	211 00		10.00	107 30
TOTAL PAINFALL	(mm) =	211.00		212 00	212 00
PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFIC	TENT -	1 00		212.00	93
RONOFF COEFFEC	-	1.00		.03	.55
*** WARNING: STOR	AGE COEFF	. IS SMALLI	ER THA	N TIME STEP!	
(i) CN PROCEI	DURE SELEC	CTED FOR PI	ERVIOU	S LOSSES:	
CN* =	84.0	Ia = Dep. S	Storag	e (Above)	
(ii) TIME STER				OR EQUAL	
		200000000000000000000000000000000000000			
THAN THE					
THAN THE (iii) PEAK FLOW				OW IF ANY.	
(iii) PEAK FLOW	N DOES NO	r include i	BASEFL		
(iii) PEAK FLOW	N DOES NO	r include i	BASEFL		
(iii) PEAK FLOW	N DOES NO	I INCLUDE I	BASEFL		
(iii) PEAK FLOW	N DOES NO	I INCLUDE I	BASEFL		
(iii) PEAK FLOW	N DOES NO	I INCLUDE I	BASEFL		
(iii) PEAK FLOW CALIB STANDHYD (0201) ID= 1 DT= 5.0 min	N DOES NOT	(ha) = Imp(%) = '	#4.22	Dir. Conn.(
(iii) PEAK FLOW CALIB STANDHYD (0201) ID= 1 DT= 5.0 min	N DOES NOT	(ha) = Imp(%) = '	#4.22	Dir. Conn.(
(iii) PEAK FLOW CALIB STANDHYD (0201) ID= 1 DT= 5.0 min	N DOES NOT	(ha) = Imp(%) = '	#4.22	Dir. Conn.(
(iii) PEAK FLOW CALIB STANDHYD (0201) ID= 1 DT= 5.0 min	N DOES NOT	(ha) = Imp(%) = '	#4.22	Dir. Conn.(
(iii) PEAK FLOW CALIB STANDHYD (0201) ID= 1 DT= 5.0 min	N DOES NOT	(ha) = Imp(%) = '	#4.22	Dir. Conn.(
(iii) PEAK FLOW CALIB STANDHYD (0201) ID= 1 DT= 5.0 min	N DOES NOT	(ha) = Imp(%) = '	#4.22	Dir. Conn.(
(iii) PEAK FLOW CALIB STANDHYD (0201) ED= 1 DT= 5.0 min	N DOES NOT	(ha) = Imp(%) = '	#4.22	Dir. Conn.(
(iii) PEAK FLOW CALIB STANDHYD (0201) ID= 1 DT= 5.0 min Surface Area Dep. Storage Average Slope Length Mannings n	W DOES NO	(ha)= Imp(%)= IMPERVIOU 2.95 1.00 1.00 167.70 .013	4.22 70.00 US	Dir. Conn.(*) PERVIOUS (i) 1.27 5.00 2.00 40.00 .250	
(iii) PEAK FLOW CALIB STANDHYD (0201) ID= 1 DT= 5.0 min Surface Area Dep. Storage Average Slope Length Mannings n	W DOES NO	(ha)= Imp(%)= IMPERVIOU 2.95 1.00 1.00 167.70 .013	4.22 70.00 US	Dir. Conn.(*) PERVIOUS (i) 1.27 5.00 2.00 40.00 .250	
(iii) PEAK FLON CALIB STANDHYD (0201) ID= 1 DT= 5.0 min Surface Area Dep. Storage Average Slope Length Mannings n	W DOES NO	(ha)= Imp(%)= IMPERVIOU 2.95 1.00 1.00 167.70 .013	4.22 70.00 US	Dir. Conn.(*) PERVIOUS (i) 1.27 5.00 2.00 40.00 .250	
(iii) PEAK FLON CALIB STANDHYD (0201) ID= 1 DT= 5.0 min Surface Area Dep. Storage Average Slope Length Mannings n	W DOES NO	(ha)= Imp(%)= IMPERVIOU 2.95 1.00 1.00 167.70 .013	4.22 70.00 US	Dir. Conn.(*) PERVIOUS (i) 1.27 5.00 2.00 40.00 .250	
(iii) PEAK FLON CALIB STANDHYD (0201) ID= 1 DT= 5.0 min Surface Area Dep. Storage Average Slope Length Mannings n	W DOES NO	(ha)= Imp(%)= IMPERVIOU 2.95 1.00 1.00 167.70 .013	4.22 70.00 US	Dir. Conn.(*) PERVIOUS (i) 1.27 5.00 2.00 40.00 .250	
(iii) PEAK FLON CALIB STANDHYD (0201) ID= 1 DT= 5.0 min Surface Area Dep. Storage Average Slope Length Mannings n	W DOES NO	(ha)= Imp(%)= IMPERVIOU 2.95 1.00 1.00 167.70 .013	4.22 70.00 US	Dir. Conn.(*) PERVIOUS (i) 1.27 5.00 2.00 40.00 .250	%)= 55.00
CALIB STANDHYD (0201) ID= 1 DT= 5.0 min Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten over Storage Coeff. Unit Hyd. Tpeal Unit Hyd. peak	Area Total (ha) = (mm) = (%) = (mm/hr) = r (min) = (min) = (c (min) = (c (min) = (c ms) = (c ms) = (ms) = (m	(ha)= Imp(%)= IMPERVIOU 2.95 1.00 1.00 167.70 .013 56.00 4.39 5.00 .23	4.22 70.00 US	Dir. Conn.(*) PERVIOUS (i) 1.27 5.00 2.00 40.00 .250 81.45 15.00 12.05 (ii) 15.00 .09	*TOTALS*
CALIB STANDHYD (0201) ID= 1 DT= 5.0 min Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten over Storage Coeff. Unit Hyd. Tpeal Unit Hyd. Tpeal	Area Total (ha) = (mm) = (%) = (mm/hr) = r (min) = (min) = (c (min) = (c (min) = (c ms) = (c ms) = (ms) = (m	(ha)= Imp(%)= IMPERVIOU 2.95 1.00 1.00 167.70 .013 56.00 4.39 5.00 .23	4.22 70.00 US	Dir. Conn.(*) PERVIOUS (i) 1.27 5.00 2.00 40.00 .250 81.45 15.00 12.05 (ii) 15.00 .09	*TOTALS* .640 (iii)
CALIB STANDHYD (0201) CD= 1 DT= 5.0 min Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten over Storage Coeff. Unit Hyd. Tpeal Unit Hyd. Tpeal	Area Total (ha) = (mm) = (%) = (mm/hr) = r (min) = (min) = (c (min) = (c (min) = (c ms) = (c ms) = (ms) = (m	(ha)= Imp(%)= IMPERVIOU 2.95 1.00 1.00 167.70 .013 56.00 4.39 5.00 .23	4.22 70.00 US	Dir. Conn.(*) PERVIOUS (i) 1.27 5.00 2.00 40.00 .250 81.45 15.00 12.05 (ii) 15.00 .09	*TOTALS* .640 (iii)
CALIB STANDHYD (0201) CD= 1 DT= 5.0 min Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten over Storage Coeff. Unit Hyd. Tpeal Unit Hyd. Tpeal	Area Total (ha) = (mm) = (%) = (mm/hr) = r (min) = (min) = (c (min) = (c (min) = (c ms) = (c ms) = (ms) = (m	(ha)= Imp(%)= IMPERVIOU 2.95 1.00 1.00 167.70 .013 56.00 4.39 5.00 .23	4.22 70.00 US	Dir. Conn.(*) PERVIOUS (i) 1.27 5.00 2.00 40.00 .250 81.45 15.00 12.05 (ii) 15.00 .09	*TOTALS* .640 (iii)
CALIB STANDHYD (0201) D= 1 DT= 5.0 min Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten over Storage Coeff. Unit Hyd. Tpeal Unit Hyd. peak	Area Total (ha) = (mm) = (%) = (mm/hr) = r (min) = (min) = (c (min) = (c (min) = (c ms) = (c ms) = (ms) = (m	(ha)= Imp(%)= IMPERVIOU 2.95 1.00 1.00 167.70 .013 56.00 4.39 5.00 .23	4.22 70.00 US	Dir. Conn.(*) PERVIOUS (i) 1.27 5.00 2.00 40.00 .250 81.45 15.00 12.05 (ii) 15.00 .09	*TOTALS* .640 (iii) 10.00 197.38 212.00
(iii) PEAK FLOW CALIB STANDHYD (0201) D= 1 DT= 5.0 min Surface Area Dep. Storage Average Slope Length Mannings n	Area Total (ha) = (mm) = (%) = (mm/hr) = r (min) = (min) = (c (min) = (c (min) = (c ms) = (c ms) = (ms) = (m	(ha)= Imp(%)= IMPERVIOU 2.95 1.00 1.00 167.70 .013 56.00 4.39 5.00 .23	4.22 70.00 US	Dir. Conn.(*) PERVIOUS (i) 1.27 5.00 2.00 40.00 .250 81.45 15.00 12.05 (ii) 15.00 .09	*TOTALS* .640 (iii)
CALIB STANDHYD (0201) TD= 1 DT= 5.0 min Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten. over Storage Coeff. Unit Hyd. Tpeal Unit Hyd. peak PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFIC:	Area Total	(ha)= Imp(%)= IMPERVIOU 2.95 1.00 1.00 167.70 013 56.00 5.00 4.39 5.00 23 .36 10.00 211.00 212.00	4.22 70.00 US	Dir. Conn.() PERVIOUS (i) 1.27 5.00 2.00 40.00 .250 81.45 15.00 12.05 (ii) 15.00 .09 .28 10.00 180.73 212.00 .85	*TOTALS* .640 (iii) 10.00 197.38 212.00
CALIB STANDHYD (0201) ID= 1 DT= 5.0 min Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten. over Storage Coeff. Unit Hyd. Tpeal Unit Hyd. Tpeal Unit Hyd. Tpeal Unit Hyd. Topak PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFIC:	Area Total	(ha)= Imp(%)= IMPERVIOU 2.95 1.00 1.00 1.00 5.00 4.39 5.00 2.3 36 10.00 211.00 212.00 1.00	4.22 70.00 US	Dir. Conn.() PERVIOUS (i) 1.27 5.00 2.00 40.00 .250 81.45 15.00 12.05 (ii) 15.00 .09 .28 10.00 180.73 212.00 .85 N TIME STEP!	*TOTALS* .640 (iii) 10.00 197.38 212.00
CALIB STANDHYD (0201) ID= 1 DT= 5.0 min Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten over Storage Coeff. Unit Hyd. Tpeal Unit Hyd. Tpeal Unit Hyd. PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFIC: **** WARNING: STORJ	M DOES NO'	(ha) = Imp(%) = Imp(%	4.22 70.00 (ii)	Dir. Conn.() PERVIOUS (i) 1.27 5.00 2.00 40.00 .250 81.45 15.00 12.05 (ii) 15.00 .09 .28 10.00 180.73 212.00 .85 N TIME STEP!	*TOTALS* .640 (iii) 10.00 197.38 212.00
CALIB STANDHYD (0201) ID= 1 DT= 5.0 min Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten. over Storage Coeff. Unit Hyd. Tpeal Unit Hyd. peak PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFIC: **** WARNING: STORA (i) CN PROCEI (ii) TIME STEE (ii) TIME STEE (ii) TIME STEE (ii) TIME STEE	Area	(ha)= Imp(%)= (ha)= Imp(%)= IMPERVIOU 2.95 1.00 1.00 167.70 .013 56.00 4.39 5.00 4.39 5.00 211.00 212.00 1.00 .IS SMALLI CTED FOR PH Ia = Dep. 1	4.22 70.00 US (ii)	Dir. Conn.() PERVIOUS (i) 1.27 5.00 2.00 40.00 .250 81.45 15.00 12.05 (ii) 15.00 .09 .28 10.00 180.73 212.00 .85 N TIME STEP!	*TOTALS* .640 (iii) 10.00 197.38 212.00
CALIB STANDHYD (0201) ID= 1 DT= 5.0 min Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten over Storage Coeff. Unit Hyd. Tpeal Unit Hyd. peak PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFIC: **** WARNING: STORJ (i) CN PROCEI CN* = (ii) TIME STEI THAN THE	M DOES NO'	(ha) = Imp(%) = Imp(%) = Imp(%) = Imp(%) = Imperviou 2.95 1.00 1.00 1.00 5.00 4.39 5.00 211.00 211.00 211.00 1.00 212.00 IS SMALLI CTED FOR PI Ia = Dep. 5 COEFFICIEM:	4.22 70.00 US (ii) (iii)	Dir. Conn.() PERVIOUS (i) 1.27 5.00 2.00 40.00 .250 81.45 15.00 12.05 (ii) 15.00 .09 .28 10.00 180.73 212.00 .85 N TIME STEP! S LOSSES: e (Above) OR EQUAL	*TOTALS* .640 (iii) 10.00 197.38 212.00
CALIB STANDHYD (0201) ID= 1 DT= 5.0 min Surface Area Dep. Storage Average Slope Length Mannings n Max.Eff.Inten. over Storage Coeff. Unit Hyd. Tpeal Unit Hyd. peak PEAK FLOW TIME TO PEAK RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFIC: **** WARNING: STORA (i) CN PROCEI (ii) TIME STEE (ii) TIME STEE	M DOES NO'	(ha) = Imp(%) = Imp(%) = Imp(%) = Imp(%) = Imperviou 2.95 1.00 1.00 1.00 5.00 4.39 5.00 211.00 211.00 211.00 1.00 212.00 IS SMALLI CTED FOR PI Ia = Dep. 5 COEFFICIEM:	4.22 70.00 US (ii) (iii)	Dir. Conn.() PERVIOUS (i) 1.27 5.00 2.00 40.00 .250 81.45 15.00 12.05 (ii) 15.00 .09 .28 10.00 180.73 212.00 .85 N TIME STEP! S LOSSES: e (Above) OR EQUAL	*TOTALS* .640 (iii) 10.00 197.38 212.00

ADD HYD (0001) 1 + 2 = 3 	(ha) 4.67	(cms)	(hrs) 10.00	(mm) 197.38
ID = 3 (0001):	8.89	1.347	10.00	197.38
NOTE: PEAK FLOWS DO N	OT INCL	JDE BASEFI	LOWS IF A	NY.
ADD HYD (0002)				
1 + 2 = 3		QPEAK (cms)		
ID1= 1 (0102):	.18	.022	10.00	137.47
+ ID2= 2 (0001):				
ID = 3 (0002):				
NOTE: PEAK FLOWS DO N	OT INCL	JDE BASEFI	LOWS IF A	NY.

CALIB		(2)	0.1		
STANDHYD (0203)					
ID= 1 DT= 5.0 min	Total	Imp(%)= 50	J.00 Dir. C	Conn.(%) = 50.00)
			S PERVIOUS	,	
Surface Area	(ha)=	.46	. 46		
Dep. Storage	(mm) =	1.00	5.00		
Average Slope	(%)=	1.00	2.00		
Length	(m)=	77.90	25.00		
Mannings n	=	.013	.250		
Max.Eff.Inten.(mm/hr)=	56.00	52.71		
over	(min)	5.00	10.00		
Storage Coeff.	(min)=	2.77	(ii) 9.65	(ii)	
Unit Hyd. Tpeak	(min)=	5.00	10.00		
Unit Hyd. peak	(cms)=	. 28	.11		
				TOTALS	r
PEAK FLOW	(cms)=	.07	.07	.137	(iii)
TIME TO PEAK	(hrs)=	10.00	10.00	10.00	
RUNOFF VOLUME					
TOTAL RAINFALL	(mm) =	212.00	212.00	212.00	
RUNOFF COEFFICI	ENT =	1.00	.79	.89	

**** WARNING: STORAGE COEFF. IS SMALLER THAN TIME STEP!

- (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:

 CN* = 84.0 Ia = Dep. Storage (Above)
 (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
- THAN THE STORAGE COEFFICIENT.
 (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.

ADD HYD (0004)				
1 + 2 = 3	AREA	QPEAK	TPEAK	R.V
	(ha)	(cms)	(hrs)	(mm
ID1= 1 (0002):	9.07	1.369	10.00	196.19
+ ID2= 2 (0203):	.91	.137	10.00	189.39
ID = 3 (0004):	9.98	1.506	10.00	195.57

NOTE: PEAK FLOWS DO NOT INCLUDE BASEFLOWS IF ANY.

NOTE: PEAK FLOWS	DO NOT INCLUD	E BASEFLOW	S IF AN	Y.		
ID1= 1 (0507) + ID2= 2 (0101) ======= ID = 3 (0006)	: 9.98 : 5.09 =======	1.486 1 .642 1	0.00 0.17	195.34 160.20		
DD HYD (0006) 1 + 2 = 3	(ha)	QPEAK (cms)	(hrs)	(mm)		
(i) PEAK FLOW DOES						
TOTAL RAINFALL (mm)= 212.000					
PEAK FLOW (C TIME TO PEAK (h RUNOFF VOLUME (rs)= 10.167	(i)				
Unit Hyd Qpeak (c	ms)= .463					
SHYD (0101)	Ia (mm)=	8.00	Curve N # of Li	umber near Re	(CN) = 82.0 es.(N) = 3.00	
LIB						
MAXI	MUM STORAGE	USED	(ha.	m.)= .	4928	
	FLOW RED					
OUTFLOW: ID= 2 (00 OUTFLOW: ID= 1 (05		1.51				
INFLOW : ID= 2 (00	AREA (ha)			EAK rs)	R.V.	
	.0140	.1641 .1828	5.1	234	.5137 .5648	
	.0132	.1459	.5	576	.3700	
	.0104	.0936 .1106 .1280	.2	110 271	.2412 .2824	
	(cms)	(ha.m.) .0000	(cm	s) 841	(ha.m.) .2018	

APPENDIX "E"

Site Water Balance Calculations

VALDOR ENGINEERING INC.

File: 14118

Date: October 2018

Table E.1: Site Water Balance Calculations (Annual) Corseed Subdivision, Town of Grand Valley

	6.4	W. D.	Pervious Impervious Area Area		Impervious Area	TOTAL SITE VOLUMES				Percent of				
Condition	Site Area (ha)	Water Balance Components	Without Infiltration BMP's	Without Infiltration BMP's	With Basic Infiltration BMP's	Precipitation (m ³)	Evapotranspiration (m ³)	Surplus (m³)	Runoff (m ³)	Infiltration (m ³)	Existing Infiltration (%)			
		Area (ha)	5.090	0.000	0.000									
		HSG	BC	n/a	BC									
		Weighted WHC (mm)	200	n/a	200									
Existing	5.09	Infiltration Factor Precipitation (mm)	0.545 792.7	0.00 792.7	0.000 792.7	40,348	29,850	8 29,850	10,375	4,721	5,654	100.0		
(Not to be developed)	3.07	Evapotranspiration (mm)	586	0.0	586	10,5 10			10,575	4,/21	3,034	100.0		
		Surplus (mm)	204	792.7	204									
		Surplus (mm) 204 792.7 Infiltration (mm) 111.1 0.0 Runoff (mm) 92.7 792.7 Area (ha) 5.090 0.000 HSG BC n/a Weighted WHC (mm) 200 n/a Infiltration Factor 0.545 0.00 Infiltration Factor 972.7 792.7 Evapotranspiration (mm) 886 0.0 Surplus (mm) 204 792.7 Infiltration (mm) 111.1 0.0 Runoff (mm) 92.7 792.7		0.0										
		Runoff (mm)	92.7	792.7	203.8									
					0.000									
					BC 200									
					0.000					721 5,654				
Proposed	5.09				792.7	40,348	29,850	10,375	10,375 4,721		100.0			
(Undeveloped)			586	0.0	586									
					204									
					0.0 203.8									
		runon (mm)	72.7	,,,2,,,	203.0									
		Area (ha)	9.800	0.000	0.000									
		HSG	BC	n/a	BC									
		Weighted WHC (mm)	195	n/a	195									
Existing		Infiltration Factor	0.515	0.00	0.000						100.0			
(To be developed)	9.80	Precipitation (mm)	792.7 585	792.7 0.0	792.7 585	77,685	57,312	20,135	135 9,758	10,377				
		Evapotranspiration (mm) Surplus (mm)	205	792.7	205									
		Infiltration (mm)	105.9	0.0	0.0									
		Runoff (mm)	99.6	792.7	205.5									
		Area (ha)	4.514	5.286	0.000									
		HSG	BC	n/a	BC									
Proposed		Weighted WHC (mm)	100 0.545	n/a 0.00	100 0.431						60.8			
(Developed)	9.80	Infiltration Factor Precipitation (mm)	792.7	792.7	792.7	77,685	24,060	53,475	47,168	6,306				
(No Infiltration BMPs)	,,,,,	Evapotranspiration (mm)	533	0.0	533	77,000	21,000	55,175	17,100	0,500	00.0			
,		Surplus (mm)	256	792.7	256									
		Infiltration (mm)	139.7	0.0	110.4									
		Runoff (mm)	116.6	792.7	146.0									
		Area (ha)	4.514	4.176	1.110									
		HSG Weighted WHC (mm)	BC 100	n/a n/a	BC 100									
Proposed		Infiltration Factor	0.545	n/a 0.00	0.431									
(Developed)	9.80	Precipitation (mm)	792.7	792.7	792.7	77,685	29,977	47,521	39,990	7,531	72.6			
(With Basic Infiltration		Evapotranspiration (mm)	533	0.0	533									
BMPs)		Surplus (mm)	256	792.7	256									
		Infiltration (mm) Runoff (mm)	139.7 116.6	0.0 792.7	110.4 146.0									
		ranori (iiiii)	110.0	174.1	190.0									
Proposed (Developed)	9.80		See Table	F 6					7531 + 2875	10.407	100.3			
ith Enhanced Infiltration	9.80		See Table	r.o					/531 ± 2875	10,407	100.3			

Notes:

1. Site water balance calculations based on methodology per Stormwater Management Planning and Design Manual (MOE, March 2003).

2. Basic Infiltration BMP's consist of roof leaders that discharge to pervious areas.

3. Enhanced Infiltration BMP's consist of the proposed infiltration trenches.

VALDOR

File: 14118

Date: October 2018

Table E.2: Water Holding Capacity (WHC) Calculations

Per MOE Methodology (SWM Planning & Design Manual, MOE, March 2003)

Proposed Cond (Not to be deve	litions (Pervious loned)	Ar
BC	HSG	
Lawn	нsG	
0	Area (ha)	
100	WHC (mm)	
Pasture and Shru	ıbs	
5.09	Area (ha)	
200	WHC (mm)	
Area-Weighted	WHC	
200.0	WHC (mm)	

Existing Conditions (Pervious Area) (To be developed)							
BC	HSG						
Moderately Root	ted Crops						
5.597	Area (ha)						
175	WHC (mm)						
Pasture and Shru	ıbs						
3.588	Area (ha)						
200	WHC (mm)						
Mature Forests							
0.615	Area (ha)						
350	WHC (mm)						
Area-Weighted V	WHC						
195.1	WHC (mm)						

Table 5.1: Hydrologic Gwdy Component Falmer

	Water Holding Especies	tirdrologic Salsiron	Fredipiotien	Francestation	ičaroti trin	fiels/tration
thing Larestii	all an Rouled Co	que (spinsch h	zene, beda, ear	rodsji		v
Florid Land	通過	, Âu	360		749	226
Fire Start Louis	*P\$(В	9635	F25	187	2848
sile Logic	125	18	9eo	200	225	14(3/2)
City Local	300	ă, TŞ	940	391	343	4.54
Ctay	46.	iD (ii)	950	329	210	Tax
Moderately fine	ed Crops (corns	nd recess grats	rák			
Flas Nest	*18		940r	525	123	251
Phoe Bankly Comp	356	13	92.0	1539	1003	341
Sile Legion	300	40	94(0	343	389	139)
Chy Loses	203	21s	yayı.	1 523. j	212	Î Tê
Alexer .	140	10	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		200	THE STATE OF THE S
Cartonic Salams	in i	*				-
encestal	200	200	960	1881	Tive	335
es (1 ac)	276	78	7.0	100%	746	
SCI TSignify		**	950)-		operation of the same of the s	
Clar Assess	233	273	(230	2003	779	700
<i>y</i> ,	700	17	230	2220	激展	127
Outer Terreite	,	,		*		*
Con Starts	230	n dis	T 500	500		212
Fig. 1. Spin	100		946		T	
sold teams			Ì	280	Ť	284
Taraga		:0:		i so i	174	
C/W		202			TERM	
ui elijbuusii kastinu suluus				face-englished 2	brandiani.	
Day See See	Marke La		Aprelos milionis XI e Tradació cons	₹ 2 0% &		
	Tight dags Sight sand	referencies Plans	gal organi		07 02 06	
	Colonia.	Leaf				

Proposed Conditions (Pervious Area) (To be developed)							
ВС	HSG						
Lawn							
3.124	Area (ha)						
100	WHC (mm)						
Pasture and Shru	ıbs						
0	Area (ha)						
200	WHC (mm)						
Area-Weighted	WHC						
100.0	WHC (mm)						

Urban Lawns/Shallo	w Rooted	Crops
Fine Sand	A	50
	AB	63
Fine Sandy Loam	В	75
	BC	100
Silt Loam, Muck	C	125
Clay Loam	CD	100
Clay	D	75
Moderately Rooted C	Crops	
Fine Sand	A	75
	AB	113
Fine Sandy Loam	В	150
	BC	175
Silt Loam,Muck	C	200
Clay Loam	CD	200
Clay	D	150
Pasture and Shrubs		
- morar - mila omi abo		
Fine Sand	A	100
Fine Sand	AB	125
	AB B	125 150
Fine Sand Fine Sandy Loam	AB B BC	125 150 200
Fine Sand Fine Sandy Loam Silt Loam, Muck	AB B BC C	125 150 200 250
Fine Sand Fine Sandy Loam Silt Loam, Muck Clay Loam	AB B BC C	125 150 200 250 250
Fine Sand Fine Sandy Loam Silt Loam, Muck	AB B BC C	125 150 200 250
Fine Sand Fine Sandy Loam Silt Loam, Muck Clay Loam Clay	AB B BC C	125 150 200 250 250
Fine Sand Fine Sandy Loam Silt Loam, Muck Clay Loam	AB B BC C	125 150 200 250 250
Fine Sand Fine Sandy Loam Silt Loam, Muck Clay Loam Clay Mature Forests	AB B BC C CD D	125 150 200 250 250 200
Fine Sandy Loam Fine Sandy Loam Silt Loam, Muck Clay Loam Clay	AB B BC C CD D	125 150 200 250 250 200
Fine Sand Fine Sandy Loam Silt Loam, Muck Clay Loam Clay Mature Forests Fine Sand	AB B BC C CD D	125 150 200 250 250 200 250 250 275
Fine Sand Fine Sandy Loam Silt Loam, Muck Clay Loam Clay Mature Forests	AB B BC C CD D	125 150 200 250 250 200 250 275 300
Fine Sand Fine Sandy Loam Silt Loam, Muck Clay Loam Clay Mature Forests Fine Sand Fine Sandy Loam	AB B BC C CD D A AB B BC B BC	125 150 200 250 250 250 200 250 275 300 350
Fine Sand Fine Sandy Loam Silt Loam, Muck Clay Loam Clay Mature Forests Fine Sand Fine Sandy Loam Silt Loam, Muck	AB B BC C C D D A AB B BC C C C C C C C C C C C C C C	125 150 200 250 250 200 250 275 275 300 350 400
Fine Sand Fine Sandy Loam Silt Loam, Muck Clay Loam Clay Mature Forests Fine Sand Fine Sandy Loam	AB B BC C CD D A AB B BC B BC	125 150 200 250 250 250 200 250 275 300 350

VALDOR ENGINEERING INC.

File: 14118

Date: October 2018

Table E.3: Infiltration Factor Calculation
Per MOE Methodology (SWM Planning & Design Manual, MOE, March 2003)

Topography	
0.3 0.225 0.15 0.125 0.1	Flat Land (avg slope < 0.06%) 0.06% to 0.27% Rolling Land (avg slope between 0.28% and 0.38%) 0.39% to 2.7% Hilly Land (avg slope between 2.8% and 4.7%)
Soils	
0.4 0.35 0.3 0.27 0.23 0.2 0.1	HSG A - open sandy loam HSG AB HSG B HSG BC HSG C HSG CD - medium combinations of clay and loam HSG D - tight impervious clay
Cover	
0.1 0.15 0.2	cultivated land (crops) pasture, lawns woodland (forest)

Infiltration Factor Calculations

Existing Conditions (No	t to be Develope	ed)		
0.125		Topography		
0.270		Soils		
0.150		Cover (Area-Weigh	ted)	
Land Use	Area (ha)	Cover	Area*Cover	
Pasture and Shrubs	5.09	0.15	0.7635	
Forest	0	0.2	0	
Mod. Rooted Crops	0	0.1	0	
0.545		Total Infiltration Fa	ctor (Existing Conditions	s)

Existing Conditions (To	be Developed)				
0.125		Topography			
0.270		Soils			
0.120		Cover (Area-Weight	ted)		
Land Use	Area (ha)	Cover	Area*Cover		
Pasture and Shrubs	2.198	0.15	0.3297		
Forest	0.615	0.2	0.123		
Mod. Rooted Crops	5.597	0.1	0.5597		
0.515		Total Infiltration Fac	ctor (Existing Conditions))	

Proposed Conditions		
0.125	Topography	
0.270	Soils	

VALDOR ENGINEERING INC.

File: 14118

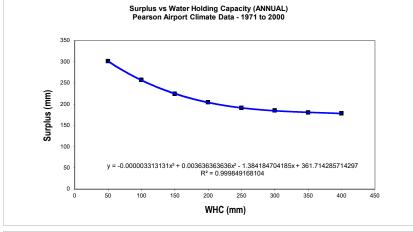

Date: October 2018

Table E.4: Surplus and Actual Evapotranspiration vs Water Holding Capacity (WHC) Regression Analysis

AES Water Balance Model Results for a Range of WHC Pearson Airport Climate Data (1971 - 2000)

Existing Condition

Tren	lline		AES Model	Results
Surplus	AE	WHC	Surplus	AE
(mm)	(mm)	(mm)	(mm)	(mm)
301	486	50	301	487
256	533	100	257	531
225	565	150	224	567
204	586	200	204	587
191	599	250	191	598
184	605	300	185	605
181	609	350	180	609
178	612	400	178	612
203.8	586.4	200.0	TOTAL SITE	

Proposed Condition

Tren	dline		AES Model	Results
Surplus	AE	WHC	Surplus	AE
(mm)	(mm)	(mm)	(mm)	(mm)
301	486	50	301	487
256	533	100	257	531
225	565	150	224	567
204	586	200	204	587
191	599	250	191	598
184	605	300	185	605
181	609	350	180	609
178	612	400	178	612
256,3	533.0	100.0	TOTAL SITE	

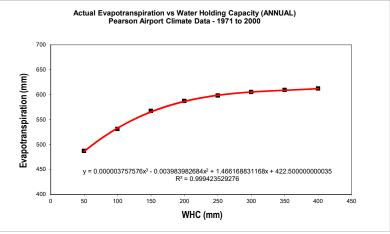
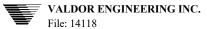
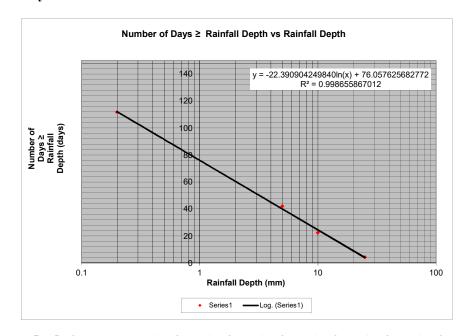




Table E.5: Rainfall Analysis - Initial Abstraction = 0.0 mm

Date: October 2018

Normal Days > Rainfall	Toronto Pearson Airport Climate Normals (1971 - 2000) 684.6 Normal Annual Rainfall Depth (mm)
Depth	111.8 Normal Annual Days with Rainfall (≥ 0.2 mm)
(days) 111.8	792.7 Normal Annual Precipitation Depth (mm)
42.1	
22.4	
	Days ≥ Rainfall Depth (days) 111.8 42.1

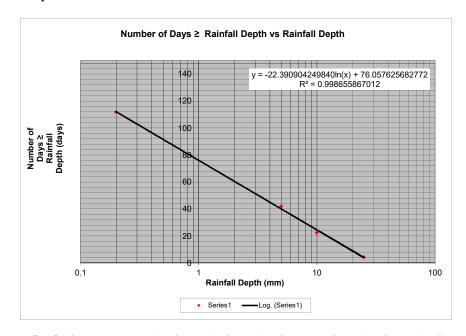

							Event Based		Annual	Annual	Annual	Annual	Annual	Annual
Simulated	Simulated	Average	Simulated			INF	Maximum	Event Based	Incremental	Cumulative	Incremental	Percent of	Cumulative	Cumulative
Depth	Days	Event	Days	Assumed	Runoff	Design	Design INF	Design INF	Design INF	Design INF	Total Rain	Total	Total Rain	Percent of
(mm)	≥	Depth	Equal to	IA	(Rain - IA)	Storm	Depth	Depth	Depth	Depth	Depth	Rain	Depth	Total Depth
` ′	Sim Depth	(mm)	Avg Depth	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(%)	(mm)	(%)
	(days)	` ,	(days)	` ′	. ,	. /	` /	` ′	` ′	` /	` ′	` ′	` ′	` /
0.2	120.19		,											
0.5	98.04	0.2 - 0.5	22.15	0.00	0.00	15.00	15.00	0.00	0.00	0.00		0.000	0.0	0.000
1.5	71.49	1	26.55	0.00	1.00	15.00	15.00	1.00	26.55	26.55	26.55	0.039	26.6	0.039
2.5	59.14	2	12.35	0.00	2.00	15.00	15.00	2.00	24.69	51.25	24.69	0.036	51.2	0.075
3.5	51.01	3	8.13	0.00	3.00	15.00	15.00	3.00	24.40	75.64	24.40	0.036	75.6	0.110
4.5	44.93	4	6.07	0.00	4.00	15.00	15.00	4.00	24.30	99.94	24.30	0.035	99.9	0.146
5.5	40.08	5	4.85	0.00	5.00	15.00	15.00	5.00	24.25	124.19	24.25	0.035	124.2	0.181
6.5	36.05	6	4.04	0.00	6.00	15.00	15.00	6.00	24.23	148.42	24.23	0.035	148.4	0.217
7.5	32.59	7	3.46	0.00	7.00	15.00	15.00	7.00	24.21	172.63	24.21	0.035	172.6	0.252
8.5	29.56	8	3.03	0.00	8.00	15.00	15.00	8.00	24.20	196.83	24.20	0.035	196.8	0.288
9.5	26.87	9	2.69	0.00	9.00	15.00	15.00	9.00	24.20	221.03	24.20	0.035	221.0	0.323
10.5	24.46	10	2.42	0.00	10.00	15.00	15.00	10.00	24.19	245.22	24.19	0.035	245.2	0.358
11.5	22.26	11	2.20	0.00	11.00	15.00	15.00	11.00	24.19	269.41	24.19	0.035	269.4	0.394
12.5	20.24	12	2.02	0.00	12.00	15.00	15.00	12.00	24.18	293.59	24.18	0.035	293.6	0.429
13.5	18.38	13	1.86	0.00	13.00	15.00	15.00	13.00	24.18	317.77	24.18	0.035	317.8	0.464
14.5	16.65	14	1.73	0.00	14.00	15.00	15.00	14.00	24.18	341.95	24.18	0.035	342.0	0.499
15.5	15.04	15	1.61	0.00	15.00	15.00	15.00	15.00	24.18	366.13	24.18	0.035	366.1	0.535
16.5	13.53	16	1.51	0.00	16.00	15.00	15.00	15.00	22.67	388.80	24.18	0.035	390.3	0.570
17.5	12.11	17	1.42	0.00	17.00	15.00	15.00	15.00	21.33	410.13	24.18	0.035	414.5	0.605
18.5	10.77	18	1.34	0.00	18.00	15.00	15.00	15.00	20.15	430.28	24.18	0.035	438.7	0.641
19.5	9.49	19	1.27	0.00	19.00	15.00	15.00	15.00	19.09	449.36	24.18	0.035	462.8	0.676
20.5	8.28	20	1.21	0.00	20.00	15.00	15.00	15.00	18.13	467.50	24.18	0.035	487.0	0.711
21.5	7.13	21	1.15	0.00	21.00	15.00	15.00	15.00	17.27	484.76	24.17	0.035	511.2	0.747
22.5	6.03	22	1.10	0.00	22.00	15.00	15.00	15.00	16.48	501.25	24.17	0.035	535.4	0.782
23.5	4.98	23	1.05	0.00	23.00	15.00	15.00	15.00	15.77	517.01	24.17	0.035	559.5	0.817
24.5	3.98	24	1.01	0.00	24.00	15.00	15.00	15.00	15.11	532.12	24.17	0.035	583.7	0.853
25.5	3.01	25	0.97	0.00	25.00	15.00	15.00	15.00	14.50	546.62	24.17	0.035	607.9	0.888
26.5	2.08	26	0.93	0.00	26.00	15.00	15.00	15.00	13.95	560.57	24.17	0.035	632.1	0.923
27.5	1.18	27	0.90	0.00	27.00	15.00	15.00	15.00	13.43	574.00	24.17	0.035	656.2	0.959
28.5	0.32	28	0.86	0.00	28.00	15.00	15.00	15.00	12.95	586.95	24.17	0.035	680.4	0.994
29	0.00	≥ 29	0.00	0.00	29.00	15.00	15.00	15.00	0.00	586.95	4.20	0.006	684.6	1.000

Table E.6: Rainfall Analysis Initial Abstraction = 5.0 mm

Date: October 2018

Normal Rainfall Depth (mm)	Normal Days ≥ Rainfall Depth	Toronto Pearson Airport Climate Normals (1971 - 2000) 684.6 Normal Annual Rainfall Depth (mm) 111.8 Normal Annual Days with Rainfall (2 0.2 mm)
()	(days)	792.7 Normal Annual Precipitation Depth (mm)
0.2	111.8	1 1 ()
5	42.1	
10	22.4	
25	43	

							Event Based		Annual	Annual	Annual	Annual	Annual	Annual
Simulated	Simulated	Average	Simulated			INF	Maximum	Event Based	Incremental	Cumulative	Incremental	Percent of	Cumulative	Cumulative
Depth	Days	Event	Days	Assumed	Runoff	Design	Design INF	Design INF	Design INF	Design INF	Total Rain	Total	Total Rain	Percent of
(mm)	≥	Depth	Equal to	IA	(Rain - IA)	Storm	Depth	Depth	Depth	Depth	Depth	Rain	Depth	Total Depth
	Sim Depth	(mm)	Avg Depth	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(%)	(mm)	(%)
	(days)	, ,	(days)		, ,			, ,	` ´	, ,	, ,		, ,	
0.2	120.19		,											
0.5	98.04	0.2 - 0.5	22.15	5.00	0.00	15.00	10.00	0.00	0.00	0.00		0.000	0.0	0.000
1.5	71.49	1	26.55	5.00	0.00	15.00	10.00	0.00	0.00	0.00	26.55	0.039	26.6	0.039
2.5	59.14	2	12.35	5.00	0.00	15.00	10.00	0.00	0.00	0.00	24.69	0.036	51.2	0.075
3.5	51.01	3	8.13	5.00	0.00	15.00	10.00	0.00	0.00	0.00	24.40	0.036	75.6	0.110
4.5	44.93	4	6.07	5.00	0.00	15.00	10.00	0.00	0.00	0.00	24.30	0.035	99.9	0.146
5.5	40.08	5	4.85	5.00	0.00	15.00	10.00	0.00	0.00	0.00	24.25	0.035	124.2	0.181
6.5	36.05	6	4.04	5.00	1.00	15.00	10.00	1.00	4.04	4.04	24.23	0.035	148.4	0.217
7.5	32.59	7	3.46	5.00	2.00	15.00	10.00	2.00	6.92	10.96	24.21	0.035	172.6	0.252
8.5	29.56	8	3.03	5.00	3.00	15.00	10.00	3.00	9.08	20.03	24.20	0.035	196.8	0.288
9.5	26.87	9	2.69	5.00	4.00	15.00	10.00	4.00	10.75	30.78	24.20	0.035	221.0	0.323
10.5	24.46	10	2.42	5.00	5.00	15.00	10.00	5.00	12.10	42.88	24.19	0.035	245.2	0.358
11.5	22.26	11	2.20	5.00	6.00	15.00	10.00	6.00	13.19	56.07	24.19	0.035	269.4	0.394
12.5	20.24	12	2.02	5.00	7.00	15.00	10.00	7.00	14.11	70.18	24.18	0.035	293.6	0.429
13.5	18.38	13	1.86	5.00	8.00	15.00	10.00	8.00	14.88	85.06	24.18	0.035	317.8	0.464
14.5	16.65	14	1.73	5.00	9.00	15.00	10.00	9.00	15.54	100.61	24.18	0.035	342.0	0.499
15.5	15.04	15	1.61	5.00	10.00	15.00	10.00	10.00	16.12	116.72	24.18	0.035	366.1	0.535
16.5	13.53	16	1.51	5.00	11.00	15.00	10.00	10.00	15.11	131.84	24.18	0.035	390.3	0.570
17.5	12.11	17	1.42	5.00	12.00	15.00	10.00	10.00	14.22	146.06	24.18	0.035	414.5	0.605
18.5	10.77	18	1.34	5.00	13.00	15.00	10.00	10.00	13.43	159.49	24.18	0.035	438.7	0.641
19.5	9.49	19	1.27	5.00	14.00	15.00	10.00	10.00	12.72	172.21	24.18	0.035	462.8	0.676
20.5	8.28	20	1.21	5.00	15.00	15.00	10.00	10.00	12.09	184.30	24.18	0.035	487.0	0.711
21.5	7.13	21	1.15	5.00	16.00	15.00	10.00	10.00	11.51	195.81	24.17	0.035	511.2	0.747
22.5	6.03	22	1.10	5.00	17.00	15.00	10.00	10.00	10.99	206.80	24.17	0.035	535.4	0.782
23.5	4.98	23	1.05	5.00	18.00	15.00	10.00	10.00	10.51	217.31	24.17	0.035	559.5	0.817
24.5	3.98	24	1.01	5.00	19.00	15.00	10.00	10.00	10.07	227.38	24.17	0.035	583.7	0.853
25.5	3.01	25	0.97	5.00	20.00	15.00	10.00	10.00	9.67	237.05	24.17	0.035	607.9	0.888
26.5	2.08	26	0.93	5.00	21.00	15.00	10.00	10.00	9.30	246.35	24.17	0.035	632.1	0.923
27.5	1.18	27	0.90	5.00	22.00	15.00	10.00	10.00	8.95	255.30	24.17	0.035	656.2	0.959
28.5	0.32	28	0.86	5.00	23.00	15.00	10.00	10.00	8.63	263.94	24.17	0.035	680.4	0.994
29	0.00	≥ 29	0.00	5.00	24.00	15.00	10.00	10.00	0.00	263.94	4.20	0.006	684.6	1.000

Table E.7: Infiltration Trench Calculation - Commercial & Mixed Use Area Roof Drainage Areas to Infiltration Trenches

VALDOR ENGINEERING INC.

741 Rowntree Dairy Road, Suite 2, Woodbridge, Ontario L4L 5T9
Tel: 905-264-0054 Fax: 905-264-0069

info@valdor-engineering.com www.valdor-engineering.com

Project No: 14118 Date: October 2018

Total Req'd Annual Infiltration Volume to Achieve Target (m ³)	Total Actual Annual Infiltration Volume per Design (m³)	Soil Infiltration Rate (mm/h)	Drainage Area (ha)	Maximum Trench Length per Site Plan (m)	Initial Abstraction (Trench Drainage Area) (mm)	Retention Time (hr)	Total Annual Rainfall Depth (Per 1981-2010 Climate Normals for Pearson Airport) (mm)	Total Rainfall Depth Available for Infiltration Per Rainfall Analysis Assuming Ia=0.0mm (Refer to Table F.5) (mm)	Annual Rainfall Depth Needed to Achieve Target Infiltration (mm)	I Req'd Design Storm Depth to Achieve Annual Infiltration Requirements (Assuming Ia=5.0 mm) (mm)	Req'd Event-Based Runoff Volume to be Infiltrated (Based on Req'd Design Storm Depth) (m³)
2,846	1,820	15.0	0.31	-	0.0	48	684.6	586.95	918.0	15.0	46.5

Total annual infiltration volume provided (m³/yr):

2,875

1,820 cu.m/yr (Roofs) + 1,056 cu.m/yr (Rear Lots) = 2,875 cu.m/yr

Maximum Allowable Depth	
P, Soil Infiltration Rate (mm/h):	15.0
T, Drawdown Time (hr):	48
d, Maximum Allowable Depth (m):	0.72

Minimum Bottom Area	
V, Runoff Volume to Infiltrated (m³):	46.5
P, Soil Infiltration Rate (mm/h):	15.0
n, Void Ratio (clear stone):	0.40
Δt, Drawdown Time (hr):	48
A, Minimum Bottom Area (m²):	161

 $d = \frac{P \cdot T}{1000}$

Equation 4.2, Stormwater Management Planning and Design Manual, MOE, 2003

 $A = \frac{1000 \cdot V}{P \cdot n \cdot \Delta t}$

Equation~4.3, Stormwater~Management~Planning~and~Design~Manual, MOE, 2003

Infiltration Trench Design												
Infiltration Trench Location	Roof Drainage Area (ha)	Available Infiltration Volume (m³)	Length (m)	Width (m)	³ Design Depth (m)	Bottom Area (m²)	Void Ratio	Storage Volume Provided (m³)	Lesser of Available Infiltration Volume or Storage Volume Provided (m³)			
Roof Drainage Infiltration Trench (Block 5)	0.11	16.5	12.0	5.0	0.70	60	0.40	16.8	16.5			
Roof Drainage Infiltration Trench (Block 6)	0.20	30.0	22.0	5.0	0.70	110	0.40	30.8	30.0			

Total Drainage Area (ha): 0.31

Total Bottom Area Provided (m²): 170

Total Infiltration Volume Used (m³): 46.50

Notes:

Infiltration facilities are sized based on the following criteria (SWMPDM, MOE, 2003) and/or assumptions:

- (1) Infiltration trench volume should be sized based on the runoff generated by a 4-hr 15-mm event or smaller.
- (2) The drainage area to each infiltration trench should be sufficient to provide required runoff quantity.
- (3) The maximum allowable depth of the infiltration facility is based on the soil infiltrate rate and the retention time.
- (4) It is feasible to convey the runoff to the infiltration facility.
- (5) The seasonal high water table should be at least 1 m below the infiltration trench.

Table E.8: Infiltration Trench Calculation - Residential Rear Lot Areas to Infiltration Trenches

VALDOR ENGINEERING INC.

741 Rowntree Dairy Road, Suite 2, Woodbridge, Ontario L4L 5T9 Tel: 905-264-0054 Fax: 905-264-0069

info@valdor-engineering.com www.valdor-engineering.com

Project No: 14118 Date: October 2018

40.0

Total:

Total Req'd Annual Infiltration Volume to Achieve Target (m³)	Total Actual Annual Infiltration Volume per Design (m³)	Soil Infiltration Rate (mm/h)	Drainage Area (ha)	Maximum Trench Length per Site Plan (m)	Initial Abstraction (Trench Drainage Area) (mm)	Retention Time (hr)	Total Annual Rainfall Depth (Per 1981-2010 Climate Normals for Pearson Airport) (mm)	Total Rainfall Depth Available for Infiltration Per Rainfall Analysis Assuming Ia=5.0mm (Refer to Table F.4) (mm)	Annual Rainfall Depth Needed to Achieve Target Infiltration (mm)	Req'd Design Storm Depth to Achieve Annual Infiltration Requirements (Assuming Ia=5.0 mm) (mm)	Req'd Event-Based Runoff Volume to be Infiltrated (Based on Req'd Design Storm Depth) (m³)
2,846	1,056	15.0	0.40	-	5.0	48	684.6	263.94	711.5	15.0	40.0

Total annual infiltration volume provided (m³/yr):

2,875

1,820 cu.m/yr (Roofs) + 1,056 cu.m/yr (Rear Lots) = 2,875 cu.m/yr

Maximum Allowable Depth

P, Soil Infiltration Rate (mm/h): 15.0
T, Drawdown Time (hr): 48
d, Maximum Allowable Depth (m): 0.72

Minimum Bottom Area	
V, Runoff Volume to Infiltrated (m³):	40.0
P, Soil Infiltration Rate (mm/h):	15.0
n, Void Ratio (clear stone):	0.40
Δt, Drawdown Time (hr):	48
A, Minimum Bottom Area (m²):	139

 $d = \frac{P \cdot T}{1000}$ Equation 4.2, Stormwater Management Planning and Design Manual, MOE, 2003

 $A = \frac{1000 \cdot V}{P \cdot n \cdot \Delta t}$

Equation~4.3, Stormwater~Management~Planning~and~Design~Manual, MOE, 2003

Infiltration Trench Design												
Infiltration Trench Location	Rear Lot Drainage Area (ha)	Available Infiltration Volume (m³)	Length (m)	Width (m)	³ Design Depth (m)	Bottom Area (m²)	Void Ratio	Storage Volume Provided (m³)	Lesser of Available Infiltration Volume or Storage Volume Provided (m³)			
Surface Infiltration Trench (Lots 57-72)	0.40	40.0	240.0	0.6	0.70	144	0.40	40.3	40.0			
Total Drainage Area (ha)	0.40											

Notes:

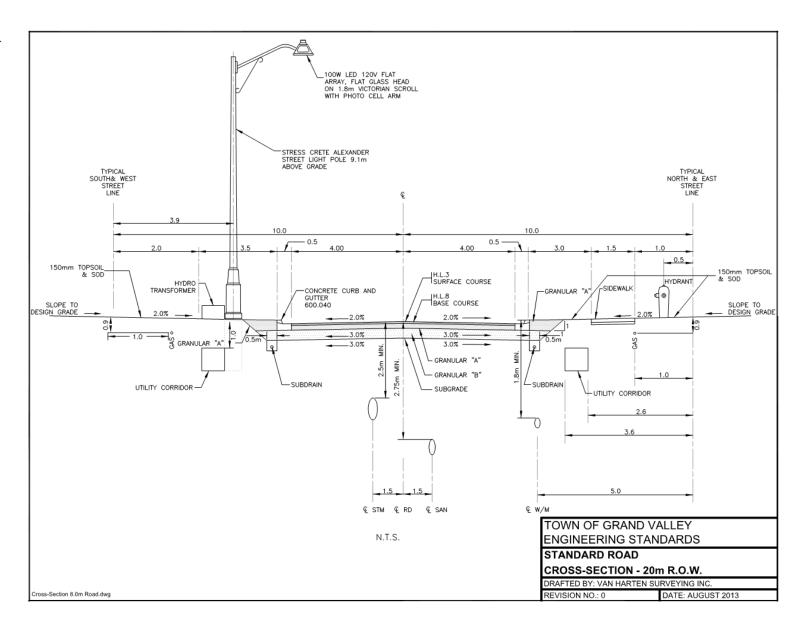
Infiltration facilities are sized based on the following criteria (SWMPDM, MOE, 2003) and/or assumptions:

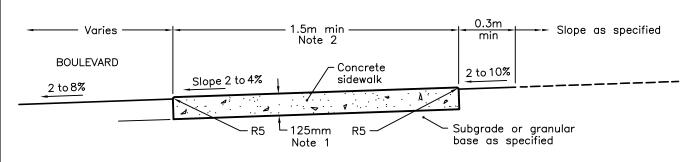
(1) Infiltration trench volume should be sized based on the runoff generated by a 4-hr 15-mm event or smaller.

144

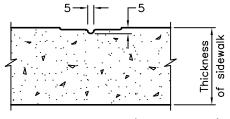
40.0

- (2) The drainage area to each infiltration trench should be sufficient to provide required runoff quantity.
- (3) The maximum allowable depth of the infiltration facility is based on the soil infiltrate rate and the retention time.
- (4) It is feasible to convey the runoff to the infiltration facility.

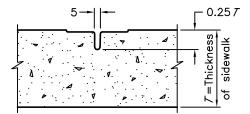

Total Bottom Area Provided (m2):

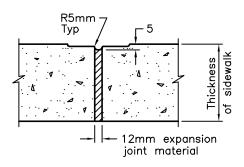

Total Infiltration Volume Used (m³):

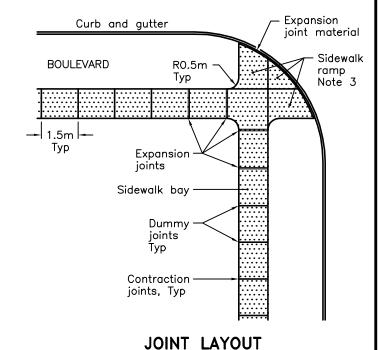
(5) The seasonal high water table should be at least 1 m below the infiltration trench.


APPENDIX "F"

Standard Road Cross Sections

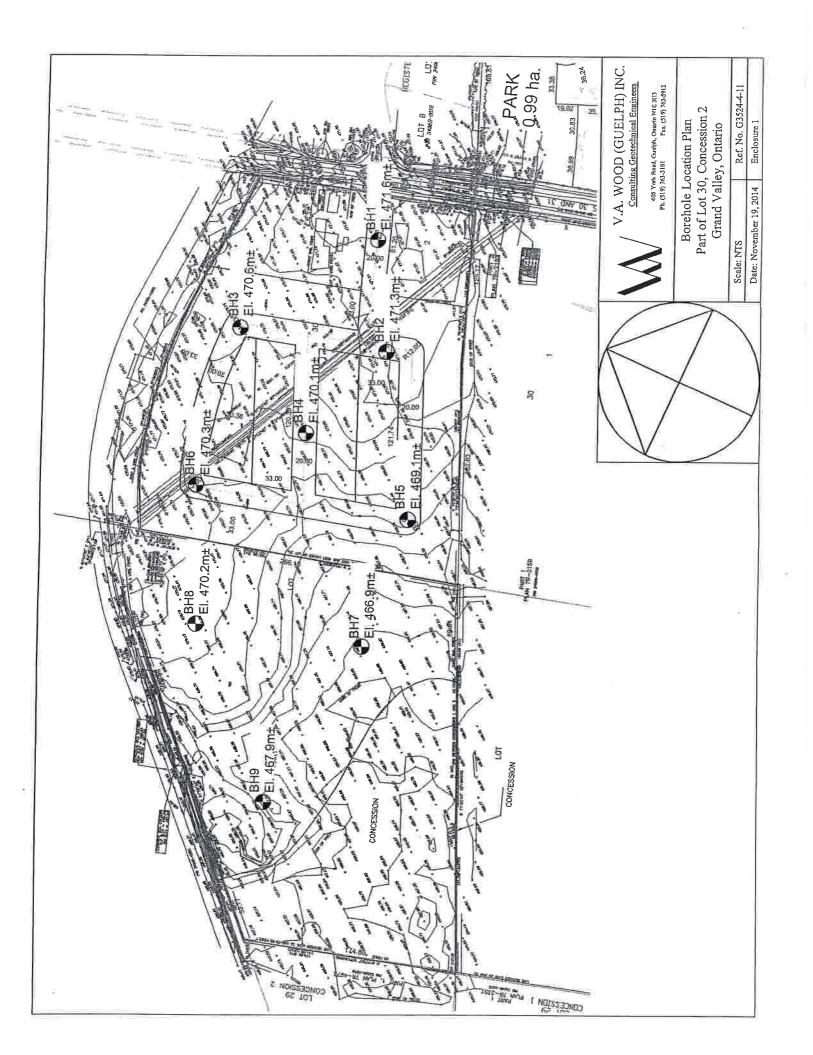



TYPICAL SECTION


DUMMY JOINT (OPTIONAL)

CONTRACTION JOINT

EXPANSION JOINT


NOTES:

- 1 Sidewalk thickness at residential driveways and adjacent to curb shall be 150mm. At commercial and industrial driveways, the thickness shall be 200mm.
- 2 Sidewalk width shall be wider when specified.
- 3 This OPSD shall be read in conjunction with OPSD 310.030, 310.031, 310.032, 310.033 and 310.039.
- A All dimensions are in millimetres unless otherwise shown.

ONTARIO PROVINCIAL STANDARD DRAWING	Nov 2015 Rev 2
CONCRETE SIDEWALK	
	OPSD 310.010

APPENDIX "G"

Geotechnical Bore Hole / Test Pit Logs

BOREHOLE No: 1

CLIENT: Corseed Inc.

PROJECT: Proposed Subdivision

LOCATION: Grand Valley, ON

ENCLOSURE No: 2

SUPERVISOR: J.D.

V.A. WOOD (GUELPH) INC. CONSULTING GEOTECHNICAL ENGINEERS

405 YORK ROAD, GUELPH, ONTARIO N1E 3H3 PH, (519) 763-3101 FAX (519) 763-5912

	SUBSURFACE PROFIL	E			8	SAMPL	E										
חדםםת	DESCRIPTION	ELEVATION	SYMBOL	GROUND WATER	NUMBER	ТҮРЕ	'N BLOWS/0.3m	PENETRATION RESISTANCE BLOWS/0.3m WATER CONTERS 1 10 15 20 2	T WEIG								
0.		471.6															
0.3	250mm Topsoil	471.4	\ \ \ \ \		1	ss	2	0									
	brown, medium to hard CLAY AND SILT trace sand, trace gravel, occasional wet sand seams,				1	ss	7	0									
	moist			14) 11	2	ss	19	Q									
				@ El. 470.4m± (12-Nov-14)	3	ss	19	c									
) ()				g El. 470.4	4	ss	29										
				W.L. @	W.L. @	W.L. @	W.L. (W.L. (W.L. (W.L. (W.L.	W.L. (4	55	29		
				-	5	SS	35	•									
5.0		466.6	H		6	ss	70										
	End of Borehole																

DRILLED BY: London Soil Test Ltd.

HOLE DIAMETER: 110mm

DRILL METHOD: Solid Stem Auger

DATUM: Geodetic

DRILL DATE: November 12, 2014

BOREHOLE No: 2

CLIENT: Corseed Inc.

PROJECT: Proposed Subdivision

ENCLOSURE No: 3

LOCATION: Grand Valley, ON

SI

V.A. WOOD (GUELPH) INC. CONSULTING GEOTECHNICAL ENGINEERS

405 YORK ROAD, GUELPH, ONTARIO N1E 3H3 PH, (519) 763-3101 FAX (519) 763-5912

ll l	
SUPERVISOR: J.D.	

	SUBSURFACE PROFIL	LE			5	SAMPL	.E				П
DEPTH (m)	DESCRIPTION	ELEVATION	SYMBOL	GROUND WATER	NUMBER	TYPE	N BLOWS/0.3m	В	ATION RESISTANCE LOWS/0.3m	WATER CONTENT %	UNIT WEIGHT
0.0	Ground Surface	471.3									
0.2	175mm Topsoil	471.1	~~		1	ss	4	0			
	brown, stiff CLAY AND SILT trace sand, trace gravel, occasional wet sand seams, moist				1	ss	13	o		•	
1.0	brown, compact SAND trace gravel, trace silt, trace clay, moist	470.3		El. 470.1m± (12-Nov-14) '	2	ss	22	0			
				Im± (12-N	3	SS	22	Ċ.		•	
2.3		469.0		70.							
	brown, compact GRAVEL wet		00 00 00 00 00 00 00 00 00 00 00 00 00	W.L. @ El. 4	4	SS	19	C			
3.1		468.2	00000	^				1			
3.3	brown, hard	468.0	77					ř	# # I		
0.0	CLAY AND SILT trace sand, trace gravel,	100.0			5	SS	53		o125mm		
	moist		#17	Ī							
	grey, hard SILTY CLAY		7								
	some sand, trace gravel,										
	moist								1		
			#								
			#3								
			#3	ŀ	6	ss	50			1 1 1	
5.0		466.3	200	1		55			1.		
1	End of Borehole								1 1		
								3			
										Y	

DRILLED BY: London Soil Test Ltd.

HOLE DIAMETER: 110mm

DRILL METHOD: Solid Stem Auger

DATUM: Geodetic

DRILL DATE: November 12, 2014

BOREHOLE No: 3

CLIENT: Corseed Inc.

PROJECT: Proposed Subdivision

ENCLOSURE No: 4

LOCATION: Grand Valley, ON

SUPERVISOR: J.D.

V.A. WOOD (GUELPH) INC. CONSULTING GEOTECHNICAL ENGINEERS

405 YORK ROAD, GUELPH, ONTARIO N1E 3H3 PH_ (519) 763-3101 FAX (519) 763-5912

_															
	SUBSURFACE PROFIL	.E			5	SAMPL	.E								
DEPTH (m)	DESCRIPTION	ELEVATION	SYMBOL	GROUND WATER	NUMBER	TYPE	'N' BLOWS/0.3m	PENETRATION BLOWS 20 40	RESISTANCE 6/0.3m - 60 80	WATER CONTENT % 5 10 15 20 25	UNIT WEIGHT				
0.0		470.6													
0.2		470.4	727		1	SS	3	0							
	brown, stiff to hard CLAY AND SILT trace sand, trace gravel, occasional wet sand seams, moist				1	SS	12	o							
	moist				2	SS	17	ō							
l.					3	SS	18	ø							
				14)											
				1111		յ± (12-Nov	El. 466.5m± (12-Nov-14)	յ± (12-Nov	4	SS	38	o			
					5	SS	40	9		•					
				ı ★ W.L. @											
			H												
4.6	grey, hard	466.0	#					Î							
5.0	SILTY CLAY	465.6	113		6	SS	33	(o .							
	End of Borehole														

DRILLED BY: London Soil Test Ltd.

HOLE DIAMETER: 110mm

DRILL METHOD: Solid Stem Auger

DATUM: Geodetic

DRILL DATE: November 12, 2014

BOREHOLE No: 4

CLIENT: Corseed Inc.

PROJECT: Proposed Subdivision

ENCLOSURE No: 5

LOCATION: Grand Valley, ON

SUPERVISOR: J.D.

V.A. WOOD (GUELPH) INC. CONSULTING GEOTECHNICAL ENGINEERS

405 YORK ROAD, GUELPH, ONTARIO N1E 3H3 PH. (519) 763-3101 FAX (519) 763-5912

	SUBSURFACE PROFILE						SAMPL	E									
	DEPTH (m)	DESCRIPTION	ELEVATION	SYMBOL	GROUND WATER	NUMBER	ТҮРЕ	'N' BLOWS/0.3m	PENET	FRATION BLOW 40	I RESIS S/0.3m	STANCE 80			%	0 25	UNIT WEIGHT
	0.0	Ground Surface	470.1														
F	0.1	125mm Topsoil	470.0	~~~		ß	SS	2	2								
		brown, medium to hard CLAY AND SILT trace sand, trace gravel, moist to wet				ď	SS	5	0		27 CZ 27 Cz				•		
						2	SS	as	0		Ŧ						
						3	ss	22	ò		ļ	ì					
					El. 468.1m± (12-Nov-14) 1									Í			
Ŀ	2.7		467.4	#1	(12)	્ય	SS	34		b	1						
[;	3.1	brown, compact SAND trace gravel, trace silt, trace clay, moist	467.0	76	l. 468.1m±							1					
		grey, very stiff to hard SILTY CLAY some sand, trace gravel, moist			W.L. @ El	(5)	SS	26	ō				•				
				H		Ī											
	.0		465.1	H		6	ss	46		0							
	.5	End of Borehole	700.1	الهذاك						-		100					

DRILLED BY: London Soil Test Ltd.

HOLE DIAMETER: 110mm

DRILL METHOD: Solid Stem Auger

DATUM: Geodetic

DRILL DATE: November 12, 2014

BOREHOLE No: 5

CLIENT: Corseed Inc.

PROJECT: Proposed Subdivision

ENCLOSURE No: 6

LOCATION: Grand Valley, ON

SUPERVISOR: J.D.

V.A. WOOD (GUELPH) INC. CONSULTING GEOTECHNICAL ENGINEERS

405 YORK ROAD, GUELPH, ONTARIO N1E 3H3 PH. (519) 763-3101 FAX (519) 763-5912

	SUBSURFACE PROFILE						.E			
DEPTH (m)	DESCRIPTION	ELEVATION	SYMBOL	GROUND WATER	NUMBER	TYPE	'N' BLOWS/0.3m		N RESISTANCE VS/0.3m	WATER CONTENT % LYO 25 10 15 20 25
0.0		469.1								
0.2		469.0	~~		1	ss	6	0		
0.8	brown, medium CLAY AND SILT trace sand, trace gravel, moist	468.3			1	SS	11	0	1 1	
	brown, compact SAND trace gravel, trace silt, trace clay, wet			-Nov-14) 1	2	ss	16	o,		
1.5		467.6		: (12						
	brown, very stiff CLAY AND SILT trace sand, trace gravel, occasional wet sand seams, moist			El. 468.3m± (12-Nov-14) II	3	SS	20	o		
2.3		466.8	71	@						+ +
	grey, very stiff SILTY CLAY some sand, trace gravel, occasional wet sand seams, moist		H H H H H H H H H H	Wet Cave-in @	4	SS	22	o		
			#3		5	ss	26	o		
5.0		464.1	田田田田田田田		6	ss	22	C		
0.0	End of Borehole	10-1.1		-						
,										

DRILLED BY: London Soil Test Ltd.

HOLE DIAMETER: 110mm

DRILL METHOD: Solid Stem Auger

DATUM: Geodetic

DRILL DATE: November 12, 2014

BOREHOLE No: 6

CLIENT: Corseed Inc.

PROJECT: Proposed Subdivision

ENCLOSURE No: 7

LOCATION: Grand Valley, ON

SUPERVISOR: J.D.

V.A. WOOD (GUELPH) INC. CONSULTING GEOTECHNICAL ENGINEERS

405 YORK ROAD, GUELPH, ONTARIO N1E 3H3 PH_ (519) 763-3101 FAX (519) 763-5912

	SUBSURFACE PROFIL		SAMPI	.E												
DЕРТН (m)	DESCRIPTION	ELEVATION	SYMBOL	GROUND WATER	NUMBER	TYPE	'N' BLOWS/0.3m	PENET	RATIOI BLOW 40	N RESI: 'S/0.3m	STANCE 80			R CONTENT % 15 20 25		UNIT WEIGHT
0.0	Ground Surface	470.3											-	-		
	brown, loose to compact Sandy Silt FILL trace gravel,				1	ss	5	0	Osservania I							
0.8	moist	469.5			1	SS	21	Þ		d	Ē		1	•		
U.0	100mm Topsoil	100.0	~~~	_								l i				1
	brown, very stiff to hard CLAY AND SILT trace sand, trace gravel,			Dry (12-Nov-14)	2	ss	17	0						ľ		
	occasional cobble, moist			Dry (12												
				_	3	ss	23	0			ì		•		i	
										Ĭ	B.					
				ľ	4	ss	37		0				Ì			
3.2		407.4							i			ŀ				
3.2	grey, very stiff SILTY CLAY	467.1		+				Ī		F	1		1	1		
	some sand, trace gravel,				5	ss	15	0		3			1			
	moist		#3							-						
									ombos-							
			H													
5.0_		465.3			6	ss	18	ò								
5.0	End of Borehole	-100.0						1	Cons. Civ	i	4					
									ř.		1					
									1	i	1					
										11.14	Ne di alla alla			1 1		

DRILLED BY: London Soil Test Ltd.

HOLE DIAMETER: 110mm

DRILL METHOD: Solid Stem Auger

DATUM: Geodetic

DRILL DATE: November 12, 2014

BOREHOLE No: 7

CLIENT: Corseed Inc.

PROJECT: Proposed Subdivision

LOCATION: Grand Valley, ON

ENCLOSURE No: 8

SUPERVISOR: J.D.

V.A. WOOD (GUELPH) INC. CONSULTING GEOTECHNICAL ENGINEERS

405 YORK ROAD, GUELPH, ONTARIO N1E 3H3 PH. (519) 763-3101 FAX (519) 763-5912

SURFACE PROFILE				SAMPI	-E									
NOITHIS	SYMBOL	GROUND WATER	NUMBER	TYPE	'N' BLOWS/0.3m		В	LOWS	RESIS 6/0.3m	STANCE 80		9/	Ó	IT WEIG
Surface 466.9														
466.7	7 ~~~		1	ss	3	ö			į.					
gravel,			1	ss	4	Ю.	1				4	•		
465.9	212									-				
silt, trace clay,			2	SS	12	o			ļ					
	1									f			0 1	
ravel	#4	Ī	3	SS	13	0			ĭ			0	1	
raver,	H	4				B-404-01								
464.6		<u> </u>							2	i				
		12-1								×				11
ravol		벋	4	ss	22		c			1			1	
graver,		5.1							ì	1				11
	#	46							Ť	i I				
	#	E E						Ž.						
	113	- E	5	ss	26		0		i					1 1
	44	≥ _)				11
			- 4		1									
		- 1	- 4						Ī	ij l		Н		
	1		- 1		ŀ		mic,	·	- len					11
	##	1			1	1		i	Ī	8	:			11
	#3					- 1			1	8 1				
	111		- 1							ž.				
	7		6	ss	18	0		Ĭ		i.				
	ارزار	-								81				
renole								1	8	ű.				
						- 1		į	10					
		-				3		1	-					
						- 1								
								I	1	3		ĺ		
	Surface 466.5 466.7 gravel, 465.4 gravel, 464.6	Surface 466.9 Surface 466.7 gravel, 465.4 gravel, 464.6 gravel, 464.6	Surface 466.9 gravel, 465.4 W.F. @ El. 465.1 W.F. @ El. 465.1 AMATER 461.9 AMATER 461.9	Surface 466.9 466.7 gravel, 465.4 464.6 Gravel, 461.9 461.9 461.9 6	Surface 466.9 1 ss 1 ss 2 ss 3xWBorl, 465.4 465.4 465.4 465.4 465.4 466.7 3 ss 3xwBorl, 464.6 5 ss 461.9 5 ss 461.9 5 ss 461.9 6 ss	RIPTION No	RIPTION NO No No No No No No No	RIPTION VO 1 1 20 20 20 20 20 20	RIPTION NOTE NOW NOW	RIPTION ACCORDING 1	RIPTION NO	RIPTION AGE A	RIPTION A	RIPTION VATER CONTENT VAT

DRILLED BY: London Soil Test Ltd.

HOLE DIAMETER: 110mm

DRILL METHOD: Solid Stem Auger

DATUM: Geodetic

DRILL DATE: November 12, 2014

BOREHOLE No: 8

CLIENT: Corseed Inc.

PROJECT: Proposed Subdivision

ENCLOSURE No: 9

LOCATION: Grand Valley, ON

SUPERVISOR: J.D.

V.A. WOOD (GUELPH) INC. CONSULTING GEOTECHNICAL ENGINEERS

405 YORK ROAD, GUELPH, ONTARIO N1E 3H3 PH, (519) 763-3101 FAX (519) 763-5912

SUBSURFACE PROFILE							Æ	-				
DEPTH (m)	DESCRIPTION	ELEVATION	SYMBOL	GROUND WATER	NUMBER	TYPE	N' BLOWS/0.3m	PENETRATION RESIST BLOWS/0.3m	ANCE	WATER CO %		UNIT WEIGHT
0.0		470.2						viccia i				
	100mm Topsoil		~~~~		1	SS	6	0	1			
	brown, loose to compact Sandy Silt FILL trace gravel, moist				ă	SS	10	o:		•		
0.9		469.3							P			
	75mm Topsoil	+	ĨĤ		2	SS	16	Ö	j)			- 1
	brown, stiff to very stiff CLAY AND SILT trace sand, trace gravel, occasional wet sand seams, moist								4 .d			
					3	SS	12	0	į l	(* 23	1	
				Dry (12-Nov-14)		250						
			H	된	ব	SS	20	Ö				
		-			5	SS	23	io i	1	•		
		1						P J. I	1		- 1 1	- 1
4.6		405.0		l,		I I			1			
4.0	grey, very stiff	465.6										
5.0	SILTY CLAY	465.2			6	SS	18	Q		i		
0.0	moist	7UU.Z	40									
	End of Borehole											
				1						1 1 1		
-												
										9 11 11 1		

DRILLED BY: London Soil Test Ltd.

HOLE DIAMETER: 110mm

DRILL METHOD: Solid Stem Auger

DATUM: Geodetic

DRILL DATE: November 12, 2014

BOREHOLE No: 9

CLIENT: Corseed Inc.

PROJECT: Proposed Subdivision

ENCLOSURE No: 10

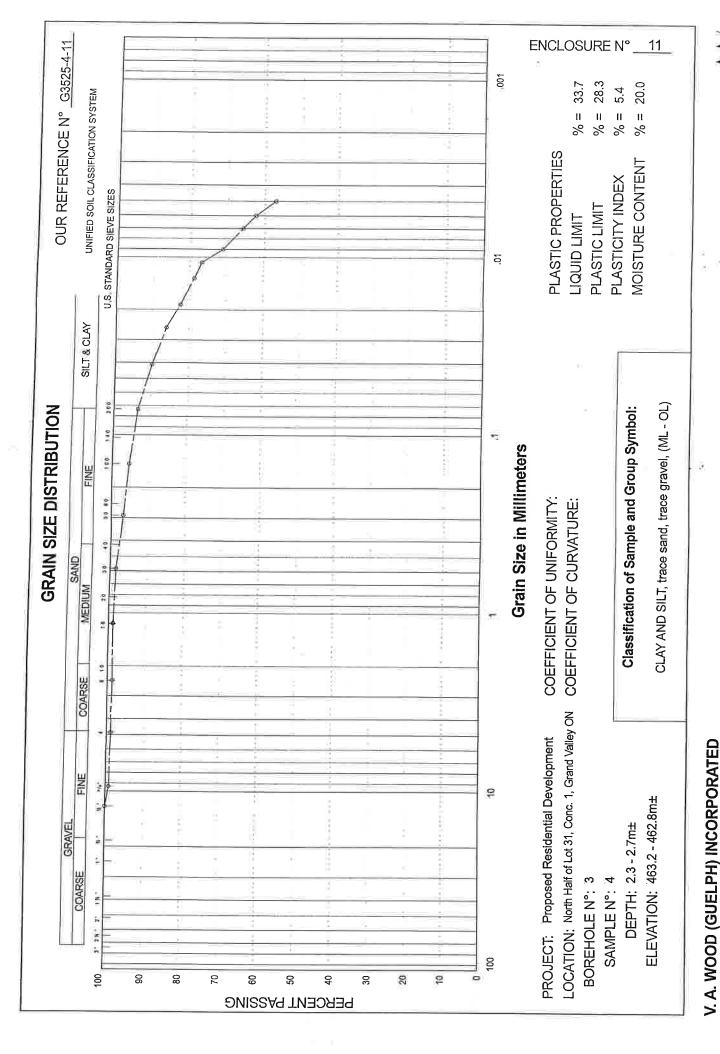
LOCATION: Grand Valley, ON

SUPERVISOR: J.D.

V.A. WOOD (GUELPH) INC. CONSULTING GEOTECHNICAL ENGINEERS

405 YORK ROAD, GUELPH, ONTARIO N1E 3H3 PH, (519) 763-3101 FAX (519) 763-5912

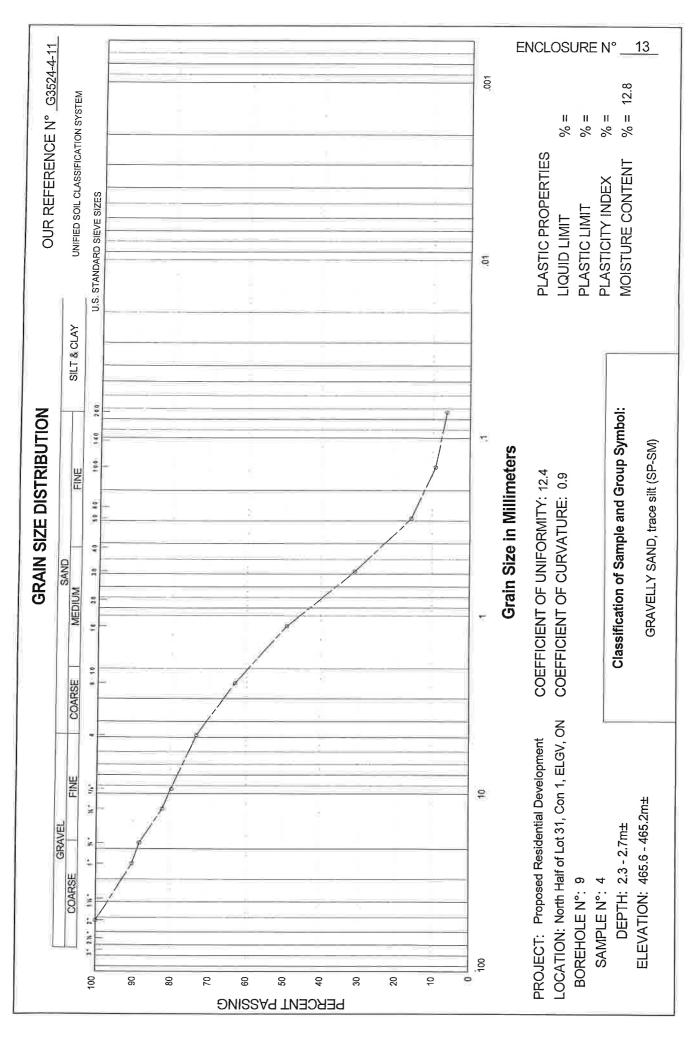
	SUBSURFACE PROFIL	8	AMPL	E												
DEРТН (m)	DESCRIPTION	ELEVATION	SYMBOL	GROUND	NUMBER	ТУРЕ	N BLOWS/0.3m	PENET	RATION BLOW 40	N RESIS 'S/0.3m 60	STANCE 80	WATER CONTENT % 5 10 15 20 25				IT WEIG
0.0	Ground Surface	467.9														
0.2	150mm Topsoil	467.8	\ \ \		1	ss	3	c								
	brown, medium CLAY AND SILT trace sand, trace gravel, moist				1	ss	5	o								
0.9		467.0														
	brown, compact GRAVELLY SAND trace silt, wet to saturated			El. 467.0m± (12-Nov-14) I	2	SS	9	0								
	wet to saturated	l j	. 0	12-1												
			 . 0	<u>+</u>												
	I	1	5 to 10 1	9.	3	ss	16	o						•		
1			0.	467												
			. 1.	mi l												
			(O) (O)	8												
			The second	W.L												
			Ω*.	≥	4	ss	13	0								
1 4				1												
			in the													
3.1	brown compact	464.8	· 0° ·													
	brown, compact SAND	1 1		1	_											
	trace gravel, trace silt, trace clay,				5	SS	18	O						*		
	wet			Ī												
8 3																
		1 1														
				- 1												1 1
4.7		463.2														
	brown, very stiff		H	ŀ										1		
5.0	CLAY AND SILT	462.9			6	SS	16	0								
	trace sand, trace gravel,														- }	
	End of Borehole															
												3				
																1 1

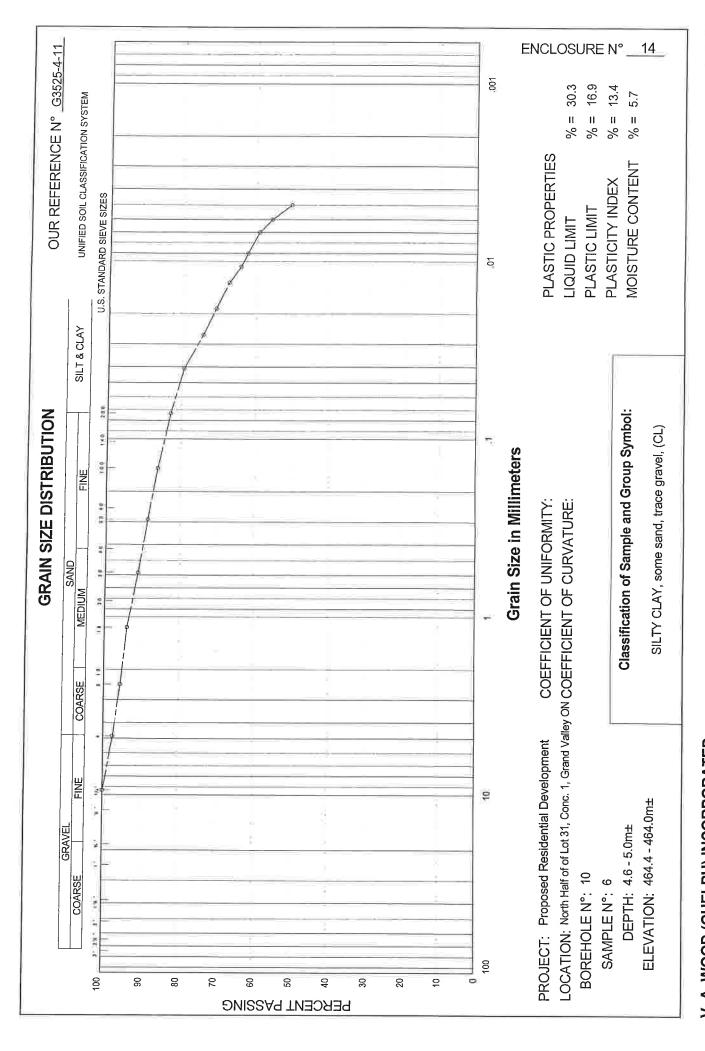

DRILLED BY: London Soil Test Ltd.

HOLE DIAMETER: 110mm

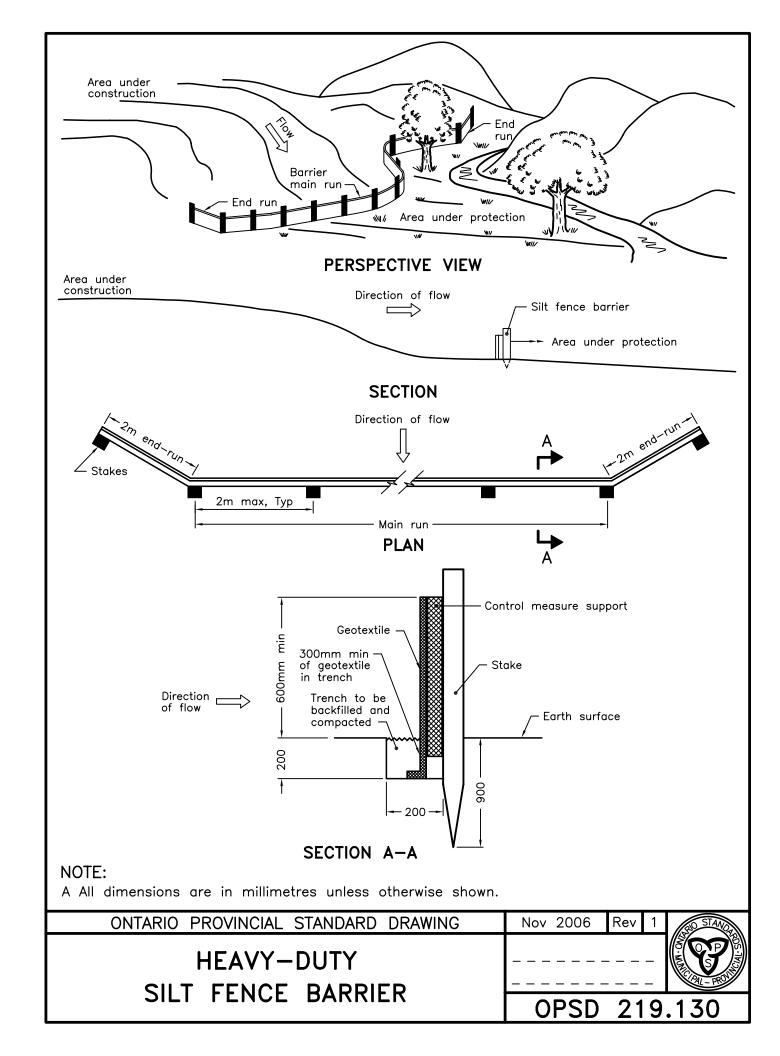
DRILL METHOD: Solid Stem Auger

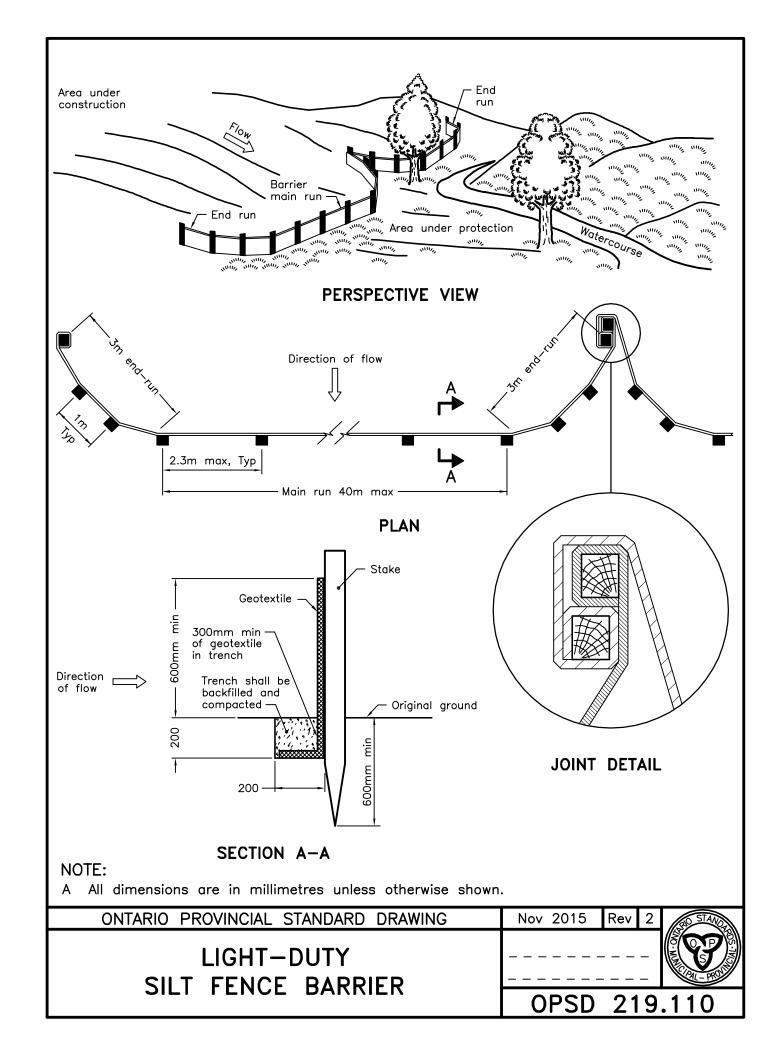
DATUM: Geodetic

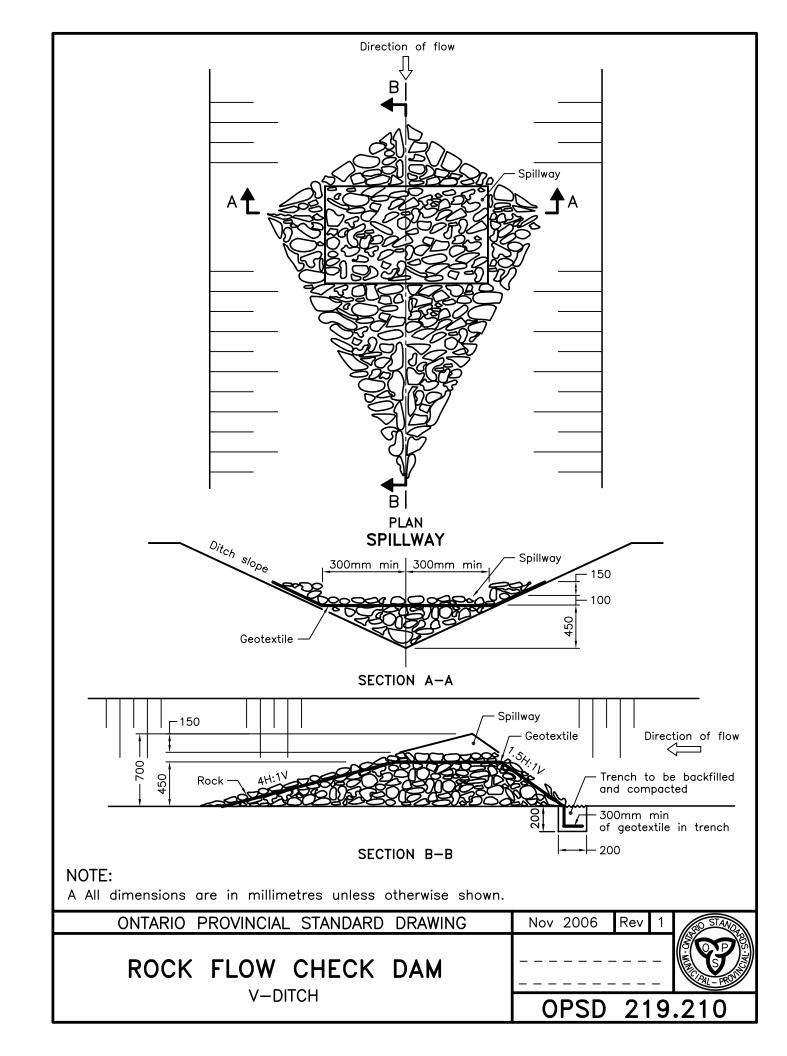

DRILL DATE: November 12, 2014



V. A. WOOD (GUELPH) INCORPORATED







APPENDIX "H"

Erosion & Sediment Control Details

