FUNCTIONAL SERVICING & PRELIMINARY STORMWATER MANAGEMENT REPORT

20 SCOTT STREET

TOWN OF GRAND VALLEY DUFFERIN COUNTY

PREPARED FOR:

HRYCYNA LAW GROUP

PREPARED BY:

C.F. CROZIER & ASSOCIATES INC. 2800 HIGH POINT DRIVE, SUITE 100 MILTON, ON L9T 6P4

MARCH 2019

CFCA FILE NO. 1559-5037

The material in this report reflects best judgment in light of the information available at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions made based on it, are the responsibilities of such third parties. C.F. Crozier & Associates Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

Revision Number	Date	Comments
Rev.0	March 2019	Issued for First Submission

TABLE OF CONTENTS

1.0		INTRODUCTION
2.0		SITE DESCRIPTION
3.0		WATER SERVICING1
	3.1	Existing Water Servicing2
	3.2	Design Water Demand2
	3.3	Proposed Water Servicing2
4.0		SANITARY SERVICING
	4.1	Existing Sanitary Servicing3
	4.2	Design Sanitary Flow
	4.3	Proposed Sanitary Servicing
5.0		EXISTING DRAINAGE CONDITIONS4
	5.1	Existing Site Drainage Conditions4
	5.2	Crozier Street External Drainage4
	5.3	Scott Street External Drainage4
	5.4	Adjacent Residential External Drainage4
6.0		PROPOSED DRAINAGE CONDITIONS
7.0		STORMWATER MANAGEMENT
	7.1	Stormwater Quantity Control
	7.2	
8.0		EROSION AND SEDIMENT CONTROLS DURING CONSTRUCTION
9.0		CONCLUSIONS

LIST OF TABLES

- Table 1:
 Estimated Domestic Design Water Demand
- Table 2:Estimated Sanitary Design Flows
- Table 3:Drainage Area Comparison for Scott Street Outlet
- Table 4:
 Pre-Development and Post-Development Site Peak Flows and Volumes (100-Year Storm)

LIST OF APPENDICES

- Appendix A: Reference Material
- Appendix B: Water and Sanitary Calculations
- Appendix C: Stormwater Management Calculations

LIST OF FIGURES

- Figure 1: Preliminary Servicing Plan
- Figure 2: Preliminary Grading Plan
- Figure 3: Existing and Proposed Drainage Plan

1.0 Introduction

C.F. Crozier & Associates Inc. (Crozier) was retained by Hrycyna Law Group (Owner) to prepare a Functional Servicing & Preliminary Stormwater Management Report to support the Draft Plan Application to permit the residential development at 20 Scott Street in the Town of Grand Valley in Dufferin County.

The purpose of this report is to demonstrate that the proposed Site can be developed in accordance with the Town of Grand Valley guidelines from a servicing & stormwater management perspective.

The following reports and design standards were referenced during the preparation of this report:

- Town of Grand Valley Engineering Standards, updated May 2016
- Grand Valley Master Servicing Plan Update, RJ Burnside, dated May 2014
- MOE Design Requirements for Drinking-Water Systems, dated 2008
- Meritech Servicing Brief, 20 Scott Street, dated June 2018

2.0 Site Description

The subject property is approximately 1.22 ha and currently consists of a single residential dwelling, ancillary building, driveway landscaped areas, and tree cover. The property is located in a residential neighbourhood and is bounded by existing residential dwellings to the north and east, Scott Street to the south and Crozier Street to the west. The site consists of steeply sloping topography extending from the west side of Crozier Street towards Scott Street.

The elements envisioned for this development include:

- 14 condominium townhouse units
- 9 condominium single detached units
- Internal private condominium road network
- Associated parking and landscaped areas
- 3 freehold detached dwellings fronting Scott Street

3.0 Water Servicing

The following sections outline the existing and proposed water servicing infrastructure and preliminary water demands.

3.1 Existing Water Servicing

As-constructed drawings for Scott Street and surrounding roads were obtained from the Town of Grand Valley. A review of as-constructed drawing M-796-25/P21 dated July 1996 indicates that:

- An existing 150 mm diameter watermain is located along Scott Street, which connects to Crozier Street to the west and Bielby Street to the east. The 150 mm diameter watermain services the existing residential dwellings along Scott Street.
- An existing fire hydrant is located near the existing Site entrance, directly adjacent to the proposed development. This hydrant will be required to be relocated as part of the development.

Refer to **Appendix A** for the referenced as-built drawings.

3.2 Design Water Demand

The proposed domestic water demand was estimated using the following documents:

- Town of Grand Valley Engineering Standards, updated May 2016
- Grand Valley Master Servicing Plan Update, RJ Burnside, dated May 2014
- MOECP Design Requirements for Drinking-Water Systems, dated 2008

An average daily water demand of 339 L/capita/day was used with an occupancy density of 4 persons/unit for the 23 proposed units. The estimated domestic water demand design flows are presented in **Table 1**, with supporting calculations provided in **Appendix B**.

Standard	Average Daily Demand	Maximum Daily Demand	Peak Hourly Demand	
	(L/s)	(L/s)	(L/s)	
Town of Grand Valley	0.41	1.0	1.5	

Table 1: Estimated Domestic Design Water Demand

3.3 Proposed Water Servicing

The development is proposed to be serviced by a 150 mm diameter watermain and two internal fire hydrants. The proposed 150 mm diameter watermain will connect to the existing 150 mm diameter watermain within Scott Street. Burnside completed a review and analysis of the existing Town water model and system, including the addition of the proposed site demands.

The proposed watermain is required to loop back to Scott Street through the existing 6.0 m wide servicing easement along the east property limit as a result of Burnside's analysis. The proposed watermain layout is shown on the Preliminary Servicing Plan, **Figure 1**.

The three freehold lots adjacent to Scott Street are proposed to be serviced with individual water connections to the existing 150 mm diameter watermain.

4.0 Sanitary Servicing

The following sections outline the existing and proposed sanitary servicing infrastructure and preliminary sanitary design flows.

4.1 Existing Sanitary Servicing

As-constructed drawings for Scott Street and surrounding roads were obtained from the Town of Grand Valley. A review of Town of Grand Valley as-constructed drawings M-796-25/P21 and M-796-24/P20 in addition to the Master Servicing Plan, indicate that:

- A 200 mm diameter sanitary sewer runs from east to west within Scott Street, which receives flows from the existing residential dwellings along Scott Street, including the existing dwelling at 20 Scott Street.
- Sanitary flows collected within the Scott Street sewer drain to an existing manhole, located adjacent to the Site. These flows are conveyed south through an existing easement to the 200 mm diameter sanitary sewer within Grier Street to the south.

4.2 Design Sanitary Flow

The Town of Grand Valley Design Criteria were referenced to calculate sanitary design flows for the proposed development. A unit sewage flow of 450 L/capita/day was used with an occupancy density of 4 persons/unit for the 26 units in the proposed development. Infiltration flow and a peaking factor was applied to the unit sewage flow to obtain the total estimated design sewage flow. The estimated domestic sanitary demand design flows are presented in **Table 2**, with supporting calculations provided in **Appendix B**.

Average Flow (L/s)	Peaking Factor	Peak Flow (L/s)	Infiltration Flow (L/s)	Total Flow (L/s)
0.54	4.0	2.2	0.22	2.4

Table 2: Estimated Sanitary Design Flows

4.3 Proposed Sanitary Servicing

The development is proposed to be serviced by the existing 200 mm diameter sanitary sewer on Scott Street. The sanitary sewer will extend from the existing manhole with a minimum slope of 1% to a property line sanitary maintenance hole within the proposed private roadway. The proposed sanitary service will be designed per the Town standards.

The three freehold lots adjacent to Scott Street are proposed to be serviced with individual sanitary connections to the existing 200 mm diameter sanitary sewer.

The Preliminary Servicing Plan (Figure 1) illustrates the location of the sanitary sewer and all connections.

It is our understanding based on discussions with the Town and Burnside that the existing municipal infrastructure has capacity to support the proposed development, without any required external improvements.

5.0 Existing Drainage Conditions

The following sections outline the existing drainage conditions for the site, including contributing external flows to the Site.

5.1 Existing Site Drainage Conditions

The 1.22 ha Site currently consists of trees, grassed areas and a single residential dwelling. There is no existing stormwater management infrastructure within the Site.

The topographic surveys provided by Van Harten Surveying Inc., dated December 7, 2018 indicates that the majority of the site (Catchment 101, 1.22 ha) drains from northwest to southeast towards Scott Street and the low-lying area in the southeast portion of the Site. The survey also shows an existing low-lying depressional area in the northeast portion of the Site and on neighbouring lands. Crozier Staff completed a site walk for the property and confirmed these drainage patterns.

Refer to **Figure 3** for pre-development drainage catchments.

5.2 Crozier Street External Drainage

There is an existing municipal storm drainage Block located adjacent to the north limits of the Site. This municipal drainage Block contains an existing stormwater conveyance system. The storm sewer and ditch convey municipal storm drainage from Crozier Street east, towards a low point on the adjacent private lands. The private lands are owned by Thomasfield Homes Ltd. and are proposed for future residential development.

Approximately 0.13 ha (Catchment EXT_1) of Crozier Street right-of-way adjacent to the Site contributes municipal stormwater runoff to the Site under existing conditions, as shown on **Figure 3**. Stormwater runoff flows overland along Crozier Street and discharges down the steep slope adjacent to the site, ultimately draining to a low point within Scott Street, located near the south east corner of the Site.

5.3 Scott Street External Drainage

An external area of Scott Street adjacent to the Site, consisting of residential front yards and the Scott Street right-of-way, drain overland to the existing low point on Scott Street. This stormwater will either infiltrate or spill overland onto adjacent properties.

It is our understanding that an existing storm drainage system and legal outlet does not exist for the Scott Street drainage. A gravity storm sewer outlet for Scott Street is required for the existing drainage and would ultimately be consisted in future conditions.

5.4 Adjacent Residential External Drainage

There is an existing catchbasin on Scott Street located at this low point, which currently does not have a legal outlet. Under existing conditions, stormwater ponds above the existing catchbasin, and either infiltrates over time or spills overland onto adjacent properties.

A small 0.05 ha drainage catchment (Catchment EXT_2) of private lawn property adjacent to the eastern Site limits contributes minor drainage to the Site. This minor drainage ponds and infiltrates under existing conditions.

6.0 Proposed Drainage Conditions

Under proposed conditions, the Site is separated into northern and southern drainage catchments. The northern Catchment 201 (0.78 ha), drains from south west to north east discharging into the existing municipal ditch north east of the Site. Runoff from Catchment 201 is collected and conveyed by the Site's internal storm sewer system located along the internal road network and will discharge to the existing municipal drainage ditch to the northeast. Stormwater runoff generated from Catchment 201 is primarily from the majority of the internal roadway and clean rooftops and lawn areas.

Given that the existing municipal drainage ditch outlets to the private lands owned by Thomasfield Developments, a formal Temporary Storm Drainage Easement will be required between Thomasfield, the Town of Grand Valley and Hrycyna Law Group. A Letter of Understanding for the Temporary Storm Drainage Easement between Hrycyna Law Group and Thomasfield, dated February 5, 2019 has been prepared and authorized by the required parties until the formal drainage agreement is prepared. Upon ultimate build out of the residential development proposed by Thomasfield, stormwater drainage will be accommodated and conveyed through future storm drainage systems to the Grand River.

The runoff from the southern Catchment 202 (0.39 ha) generally sheet flows from north to southeast discharging to Scott Street and the low-lying area in the southeast portion of the Site, consistent with existing conditions. Stormwater runoff generated from Catchment 202 is primarily from a small portion of the internal condo road and clean rooftops and lawn areas.

Overall, the total area discharging to Scott Street from pre-development conditions is reduced by approximately 70%. Therefore, the proposed drainage pattern will significantly reduce contributing stormwater runoff to the existing low point on Scott Street as well as overland spills to adjacent properties. A summary of the change in land areas discharging to Scott Street is presented in **Table 3** and **Figure 3** illustrates the proposed drainage patterns.

Conditions	Impervious Area (ha)	Pervious Area (ha)	Total Area (ha)	
Pre-Development ¹	0.06	1.29	1.35	
Post-Development ²	0.12	0.27	0.39	

Table 3: Drainage Area Comparison for Scott Street Outlet

Note: 1) The total pre-development area contributing to Scott Street was determined by adding Catchment EXT_1 and Catchment 101.

2) The total post-development contributing area is represented by Catchment 202.

Conveyance of stormwater runoff from the majority of the Site (Catchment 201) will be provided through the internal storm sewer system (sized to convey the 100-year storm event). Storms greater than the 100-year rainfall event will be conveyed overland through the internal roadway to the proposed drainage swale between Lots 5 and 6 for the majority of Catchment 201, ultimately discharging to the existing municipal drainage ditch at the northeast corner of the Site.

The major overland flow route for Catchment 202 will drain towards the low-point within Scott Street, consistent with the minor drainage from the Site.

A small 0.03 ha drainage catchment consisting of landscaped area (Catchment 203) will drain uncontrolled to Crozier Street. Stormwater runoff from this catchment is considered negligible considering the proposed land use and small contributing area.

External catchments draining onto the site will continue to be collected and conveyed under proposed conditions.

7.0 Stormwater Management

Stormwater management design criteria was established with the Town of Grand Valley and Burnside. The Site is not regulated by the Grand River Conservation Authority and therefore their stormwater management criteria has not been applied. The stormwater management criteria for the Site include:

Quantity Control

• No quantity controls are required for the Site. Collection of runoff and conveyance of drainage to the Grand River is encouraged to beat the peak flows from upstream drainage areas.

<u>Quality Control</u>

• An enhanced level of water quality control is required (80% Total Suspended Solids removal).

The following sections outline the details associated with stormwater quantity and quality control for the Site.

7.1 Stormwater Quantity Control

A MIDUSS hydrologic model was prepared to determine the 100-year pre- and post-development peak flows as well as runoff volumes discharging into the ditch north east of the Site and to Scott Street from the Site. A summary of the peak flows and volumes is presented in **Table 4** and detailed MIDUSS model results are provided in **Appendix C**.

	Pre-Develo	pment	Post-Development		
Outlet	Peak Flow (L/s)	Runoff Volume (m³)	Peak Flow (L/s)	Runoff Volume (m ³)	
Scott Street	351	719	122	244	
Ex. Municipal Ditch	0	0	328	547	

Table 4: Pre-Development and Post-Development Site Peak Flows and Volumes (100-Year Storm)

Note: 1) Refer to **Figure 3** for the pre-development and post-development catchments contributing to each outlet.

As indicated in **Table 5**, contributing peak flow and runoff volume to Scott Street is reduced by approximately 66% and 65%, respectively under post-development conditions. This solution ultimately improves upon the existing conditions by providing a net-reduction in overall contributing stormwater, which will reduce the frequency of nuisance ponding within the area of the existing low-lying area of Scott Street.

The temporary drainage agreement with Thomasfield will allow for the peak flow discharging from drainage Catchment 201 through the Thomasfield lands, to the Grand River. The stormwater flows from Catchment 201 will require a trapezoidal channel of 1.0 m bottom width, 2.8 m top width and 0.3 m depth at a 0.3% slope to convey 328 L/s. Refer to the preliminary channel sizing sheet in **Appendix C**.

7.2 Stormwater Quality Control

To achieve the stormwater quality standards, an oil/grit separator (OGS) was sized to meet the enhanced level of water quality (80% Total Suspended Solids removal). A Stormceptor STC 1000 OGS or approved equivalent is proposed for the Site.

The OGS will be located downstream of the cul-de-sac and upstream of the ditch. A detailed report of the OGS sizing is provided in **Appendix C** and the location of the OGS is shown in the Preliminary Servicing Plan, **Figure 1**.

8.0 Erosion and Sediment Controls During Construction

Erosion and sediment controls will be installed prior to the beginning of any construction activities. They will be maintained until the Site is stabilized or as directed by the Site Engineer and/or Town of Grand Valley. Controls will be inspected after each significant rainfall event and maintained in proper working condition.

The following erosion and sediment controls will be included during construction on the Site:

Heavy Duty Silt Fencing

Silt fencing will be installed on the perimeter of the Site to intercept sheet flow. Additional silt fence may be added based on field decisions by the Site Engineer and Owner, prior to, during and following construction.

Rock Mud Mat

A rock mud mat will be installed at the entrance to the construction zone to prevent mud tracking from the Site onto surrounding lands and the perimeter roadway network. All construction traffic will be restricted to this access only.

Silt Sacks in Catch Basins

Silt Sacks shall be installed in all new catch basins until the finished surfaces are stabilized.

9.0 Conclusions

Based on the information presented in this report, we offer the following conclusions:

- 1. Water servicing for the Site will be provided through a new looped connection to the existing 150 mm diameter watermain on Scott Street.
- 2. Sanitary servicing will be provided through a new connection to the existing 200 mm diameter sanitary sewer on Scott Street.
- 3. Individual water and sanitary services will be provided from Scott Street for the three freehold units.

- 4. The proposed development will be designed such that the drainage area discharging to Scott Street will be reduced by approximately 70%.
- 5. The majority of the Site's stormwater runoff will discharge into the existing municipal ditch north east of the Site and will be conveyed to the adjacent private lands and ultimately to the Grand River.
- 6. An agreement and drainage easement between the Owner and adjacent private land owners is required for the proposed stormwater drainage outlet for the Site.
- 7. Stormwater quality control will be provided through an oil-grit separator (STC 1000 or approved equivalent) which will treat runoff prior to discharging to the municipal ditch.
- 8. Erosion and sediment controls will be implemented on-site prior to construction and maintained during construction. A sediment and erosion control plan will be developed during the detailed design process.

Therefore, we conclude that the proposed development meets the requirements of the Town of Grand Valley from a site servicing perspective.

Respectfully submitted,

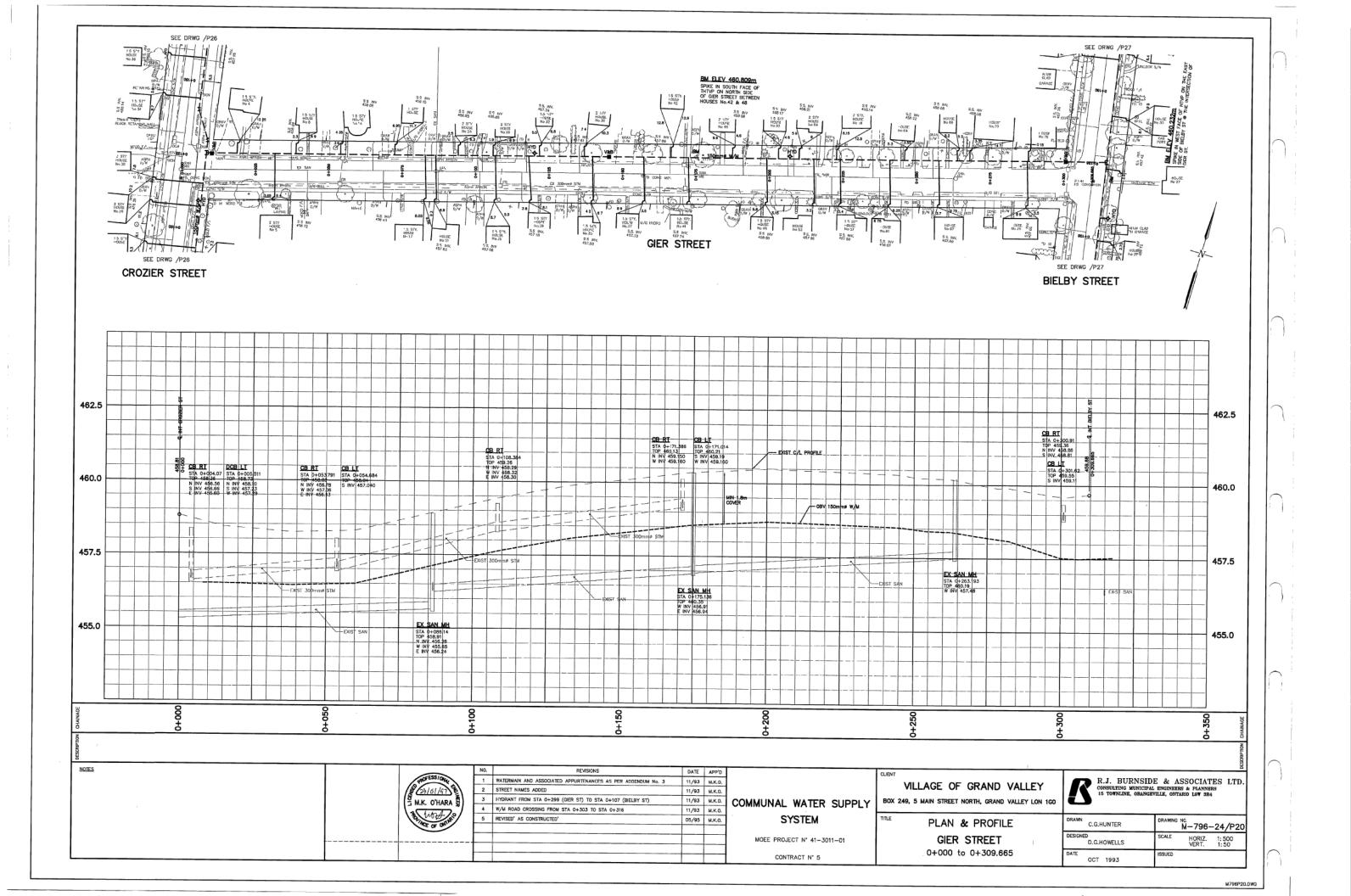
C.F. CROZIER & ASSOCIATES INC.

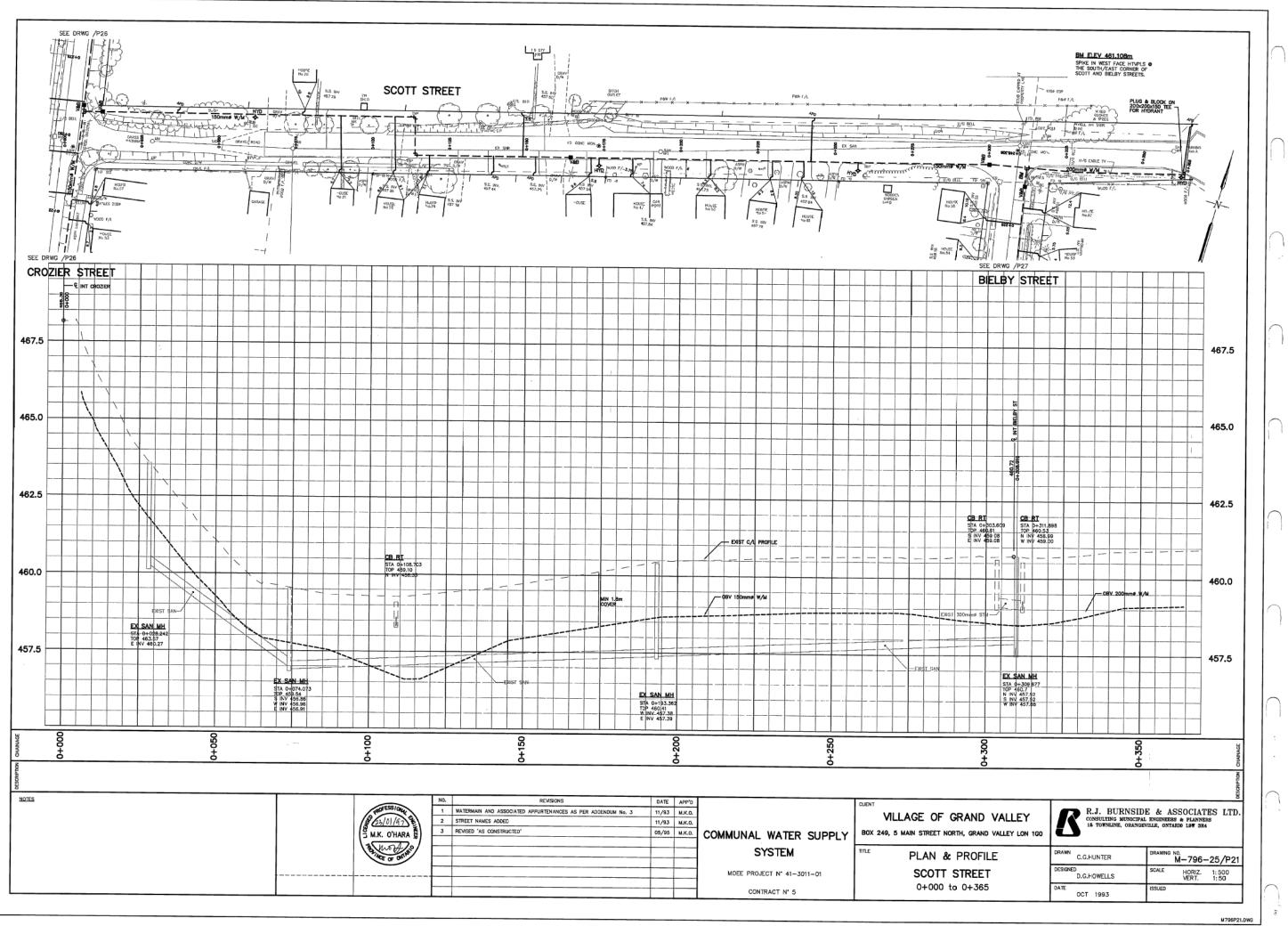
Utelle.

Brendan Walton, E.I.T. Land Development

C.F. CROZIER & ASSOCIATES INC.

ol


Jurgen Koehler, P.Eng. Associate


/CK

I:\1500\1559-Hrycyna Law Group\5037 - 20 Scott St (Civil)\Reports\5037_FSR SWM Report.docx

APPENDIX A

Reference Material

APPENDIX B

Water and Sanitary Calculations

Town of Grand Valley

Created By: BW/CK Checked By: JRK

- -

1.02

0.41

1.53

Domestic Water Demand							
				Notes & References			
Site Area: Population Density: Number of units: Population:	4 26	ha persons/unit		Section 2-1, Town of Grand Valley Engineering Standards, 2016			
Design Parameters Average Demand (L/ 339	′capita/d)]		Section 3-2, Grand Valley Engineering Standards, May 2016 Page 3, Grand Valley Master Servicing Plan Update, RJ Burnside, May 2014			
Water Demand:				1			
Average Daily	Demand =	35,256 0.41	L/day L/s				
Peal	king Factors			Section 3-2, Grand Valley Engineering Standards, May 2016			
	Max Day = Peak Hour =	2.5		Section 3.4.2, MOECP Design Requirements for Drinking-Water Systems, 2008			
Ave	erage Day =		L/s	1			
F	Max Day = Peak Hour =		L/s L/s	Max Day = Average Day Demand * Max Day Peak Hour = Average Day Demand * Peak Hour			
Municipality	Average Daily Water Demand (L/s)	Max Day Demand (L/s)	Peak Hourly Demand (L/s)				

 Created By:
 CK
 Date:
 2019.02.25

 Checked By:
 BW/JRK
 Updated:
 2019.03.08

Domestic Sanitary Design Flow

					Notes & References
	Site Area:	1.12	ha		
Populatio	•	4	persons/unit		Section 2-1, Town of Grand Valley Engineering
	er of units:				Standards, 2016
Ρ	opulation:	104			
Design Param	eters				
Average	Flow (L/co	apita/d)			Section 2-1, Town of Grand Valley Engineering
	450				Standards, 2016
					1
Sanitary Desig	n Flow:				
	Average	e Daily Flow =	450.0	L/capita/d	Average Daily Flow = Average Daily Flow (L/cap./day)
	•	e Daily Flow =	0.54	L/s	* population / 86400
Harmon Peak	Factor:	M =	4.00		M = 1 + 14 / (4 + (p/1000)^.5)
			- 1 -	1.4-	Section 2-2, Town of Grand Valley Engineering
		Peak Flow =	2.17	L/s	Standards, 2016
Infiltration Flow		Infiltration =	0.20	L/ha/s	Peak Flow = Average Daily Flow * M
		I Infiltration =	0.20	L/Id/3	Section 2-1, Town of Grand Valley Engineering
	Told		0.22		Standards, 2016
	Tota	Il Peak Flow =	2.39	L/s	Total Peak Flow = Peak Flow + Total Infiltration
Summary Tab	le			1	
Average	Peaking	Peak Flow	Infiltration	Total Peak	
Daily Flow (L/s)	Factor	(L/s)	Flow (L/s)	Flow (L/s)	
0.54	4.00	2.17	0.22	2.39	1
-					-

I ī

APPENDIX C

Stormwater Management Calculations

			100yr 20 Sco	tt St	pre d	evelop	ment 3hr C⊦	II g txt	
			MIDUSS Output MIDUSS versior				V	ersion 2 25	>" rev. 473"
"			MIDUSS created				•		ry 7, 2010"
		10	Units used: Job folder:			C · \	usors\milt	on swm\ Desk	ie METRIC" top\Other\"
"			Job Torder.		MIDUS	s File	es\20 Scott	St\Prelimi	nary Model"
	31		ME PARAMETERS"						
"		5.000 180.000	Time Step" Max. Storm ler	nath"					
"		1500.000	Max. Hydrograp	oĥ"					
	32	ST 1	ORM Chicago sto Chicago storm'	orm"					
"		4483.750	Coefficient A	•					
"		20.560	Constant B"						
		0.937 0.400	Exponent C" Fraction R"						
"		180.000	Duration"						
		1.000	Time step mult		."	215.15	58 mm/hr		
"		То	ximum intensity tal depth			93.66			
	22	6	100hyd Hydro	ograph	exter	ision ι	used in thi	s file"	
	33	2 CA	TCHMENT 1" Rectangular"						
"		1	Equal length"						
		1 1	SCS method" (#EXT 1) Exter	nal Ca	atchme	nt was	t of site"		
"		31.700	% Impervious"			int wes	st of site		
		0.130	Total Area"						
		123.800 45.200	Flow length" Overland Slope	.''					
"		0.089	Pervious Area'	1					
		123.800 45.200	Pervious lengt Pervious slope	:h''					
"		0.041	Impervious Are	ea"					
		123.800	Impervious ler	ıgth"					
"		45.200 0.250	Impervious slo Pervious Manni	pe na 'n'					
		80.000	Pervious SCS (Curve N	NO."				
		0.551 0.079	Pervious Runot Pervious Ia/S						
"		5.016	Pervious Initi	al abs	stract				
		0.013	Impervious Mar	ining '	'n'"	1			
"		98.000 0.937	Impervious SCS Impervious Rur	off co	effic	ient"			
		0.193	Impervious Ia	's coef	fficie	ent"			
		1.000	Impervious Ini 0.046	0.000		0.000	0.000	c.m/sec"	
			tchment 1	01000	Pervi	ous	Impervious	Total Area	
			rface Area me of concentra	tion	0.089		0.041 1.385	0.130 6.273	hectare" minutes"
"		ті	me to Centroid		98.76		84.871	92.641	minutes"
			infall depth		93.66		93.661	93,661	mm''
			infall volume infall losses		83.16		38.60 5.909	121.76 30.569	c.m" mm"
"		Ru	noff depth		51.64	7	87.752	63.092	mm''
			noff volume noff coefficier	+	45.86		36.16 0.937	82.02 0.674	c.m"
"		Ма	ximum flow		0.031		0.024	0.046	c.m/sec"
	40		DROGRAPH Add Ru	noff '	'				
		4	Add Runoff " 0.046	0.046	5	0.000	0.000"		
	33		TCHMENT 101"						
		1	Triangular SCS	b	Dac	1 בו			

Page 1

	40 33	SL T T R R R R R R R R R R R R R R R R R	100yr 20 Sco Equal length" SCS method" Catchment 101 % Impervious" Total Area" Flow length" Overland Slope Pervious Area Pervious leng Pervious slop Impervious slop Impervious ann Pervious SCS Pervious Mann Pervious Mann Pervious SCS Pervious Mann Pervious SCS Pervious Mann Pervious SCS Pervious Mann Pervious SCS Pervious Runo Pervious Ia/S Pervious Ia/S Pervious Ia/S Pervious Ia/S Pervious SCS Impervious SCS Impervious SCS Impervious Ia/S Pervious Init Impervious SCS Impervious Ia/S Pervious Init Impervious Ia/S Pervious Init Impervious Ia/S Pervious Init O.323 Atchment 101 Urface Area ime of concentra ime to Centroid Ainfall depth Ainfall volume Inoff volume Inoff coefficien Add Runoff " O.323 ATCHMENT 2" Rectangular" Equal length SCS method" (# EXT2) Exte % Impervious" Total Area" Flow length" Overland Slope	" th" e" ngth" pe" ing 'n' ff coef ial abs curve N ff coef ial abs coeffi ial abs	No." fficient" icient" straction" officient" abstraction fficient" abstraction 0.000 Pervious 1.193 8.457 103.642 93.661 1117.53 42.186 51.476 614.19 0.550 0.316 1 0.000	0.000 c Impervious 0.027 1.156 86.793 93.661 25.14 7.906 85.755 23.02 0.916 0.014 0.000"	c.m/sec" Total Area 1.220 8.193 103.033 93.661 1142.67 41.432 52.230 637.20 0.558 0.323	" hectare" minutes" mm" c.m" mm" c.m" c.m" c.m/sec"
" "		1 1	Equal length" SCS method"		tchmont Fo	ct of limit	_ ''	
 		0.000 0.090	% Impervious" Total Area"	rnal Ca	atchment Eas	st of Limits	5''	
		9.600 0.090	Overland Slop Pervious Area	1				
		4.140 9.600 0.000	Pervious leng Pervious slop Impervious Ar	e" ea"				
 		4.140 9.600 0.250	Impervious le Impervious sl Pervious Mann	ope"				
 		80.000 0.551 0.079	Pervious SCS Pervious Runo Pervious Ia/S	Curve N ff coef	No." fficient"			
 		5.016 0.013	Pervious Init Impervious Ma	ial abs nning '	straction" 'n'"			
 		98.000 0.000 0.193	Impervious SC Impervious Ru Impervious Ia	noff co /S coet	pefficient" fficient"			
"		1.000	Impervious In	itial a	abstraction Page 2			

	40	100yr 20 Scott St 0.031 0.35 Catchment 2 Surface Area Time of concentration Time to Centroid Rainfall depth Rainfall volume Rainfall losses Runoff depth Runoff volume Runoff coefficient Maximum flow HYDROGRAPH Add Runoff 4 Add Runoff "	51 0.000 Pervious 0.090 2.099 92.671 93.661 84.29 42.014 51.647 46.48 0.551 0.031	0.000	I g txt c.m/sec" Total Area 0.090 2.099 92.671 93.661 84.30 42.014 51.647 46.48 0.551 0.031	" hectare" minutes" mm" c.m" mm" c.m" c.m" c.m/sec"
	40	0.031 0.37 HYDROGRAPH Start - New		0.000"		
	70	2 Start - New Tributa	ıry"	0.000		
	33	0.031 0.00 CATCHMENT 102"	0.000	0.000"		
		2 Rectangular" 1 Equal length"				
		1 SCS method"				
		102 Area Outletting Tow 0.000 % Impervious"	ards Ditch"			
"		0.010 Total Area"				
		2.500 Flow length" 13.100 Overland Slope"				
"		0.010 Pervious Area"				
		2.500 Pervious length"				
		13.100 Pervious slope" 0.000 Impervious Area"				
"		2.500 Impervious length"				
		13.100 Impervious slope"				
		0.250 Pervious Manning 'n 80.000 Pervious SCS Curve	NO "			
		0.551 Pervious Runoff coe				
"		0.079 Pervious Ia/S coeff	icient"			
"		5.016 Pervious Initial ab				
		0.013 Impervious Manning 98.000 Impervious SCS Curv	n ve No."			
"		0.000 Impervious Runoff c	coefficient"			
"		0.193 Impervious Ia/S coe	efficient"			
		1.000 Impervious Initial 0.003 0.00		0 000 0	c.m/sec"	
"		Catchment 102	Pervious		Total Area	"
		Surface Area	0.010	0.000	0.010	hectare"
		Time of concentration Time to Centroid	1.413 92.491	0.193 84.831	1.413 92.491	minutes" minutes"
"		Rainfall depth	93.661	93.661	93.661	mm''
		Rainfall volume	9.37	0.00	9.37	c.m"
		Rainfall losses Runoff depth	42.014 51.647	5.909 87.752	42.014 51.647	mm'' mm''
"		Runoff volume	5.16	0.00	5.16	c.m"
"		Runoff coefficient	0.551	0.000	0.551	
	40	Maximum flow HYDROGRAPH Add Runoff	"0.003	0.000	0.003	c.m/sec"
"		4 Add Runoff "				
"		0.003 0.00	0.000	0.000"		

			100yr 20 Scott St	post develop	oment 3hr CH	HI e txt	
" "		M: M:	IDUSS Output IDUSS version IDUSS created		Ve	ersion 2.25 Februa	ry 7, 2010"
" "			nits used: ob folder:	C:\ MTDUSS File	\Users\milto es\20 Scott	on.swm\Desk St\Prelimi	ie METRIC" top\Other\" narv Model"
	31		PARAMETERS" ime Step"				
		180.000 Ma 1500.000 Ma	ax. Storm length" ax. Hydrograph"				
"	32	1 Cl	M Chicago storm" hicago storm"				
			oefficient A" onstant B"				
"		0.937 EX 0.400 F	xponent C" raction R"				
"		180.000 DI	uration" ime step multiplie	r"			
"		Maxir	num intensity 1 depth	215.15 93.60		ı	
"	33	6 10	00hyd Hydrograph HMENT 1"	extension u		s file"	
"		2 R	ectangular" qual length"				
"		1 SC	ĊS methoď" #EXT 1) West Extern	nal Catchmer	nt Outlettir	ng to Catch	ment 201"
"		0.000 %	Impervious" otal Area"			5	
"		50.000 F 10.000 O	low length" verland Slope"				
"		0.030 Pe	ervious Area" ervious length"				
"		10.000 Pe	ervious slope" mpervious Area"				
		50.000 Ir 10.000 Ir	mpervious length" mpervious slope"				
"		0.250 PC 80.000 PC	ervious Manning 'n ervious SCS Curve I	'" No."			
"		0.552 Pe	ervious Runoff coe [.] ervious Ia/S coeff	fficient"			
"		4.997 Pe	ervious Initial abs mpervious Manning	straction"			
		98.000 Ir	npervious SCS Curve npervious Runoff ce	e No."			
		0.193 Ir 1.000 Ir	npervious Ia/S coe [.] npervious Initial a	abstraction'			
"			0.010 0.000	Pervious	Impervious	.m/sec" Total Area	
		Time	ace Area of concentration	0.030 9.241	0.000 1.264	0.030 9.241	hectare" minutes"
		Rain	to Centroid fall depth	98.034 93.661	0.000 93.661	98.034 93.661	minutes" mm"
		Rain	fall volume fall losses	28.10 41.998	0.00 93.661	28.10 41.998	с.m" mm"
		Runo	ff depth ff volume	51.663 15.50	0.000 0.00	51.663 15.50	mm" C.m"
	40	Maxir	ff coefficient num flow	0.552 0.010	0.000 0.000	0.552 0.010	c.m/sec"
	40	4 A	DGRAPH Add Runoff dd Runoff "		0.000"		
 	33	CATCI 2 Re	0.010 0.010 HMENT 201" ectangular"	0.000	0.000		
		2 10	Je cangu rai	Page 1			

		100yr 20 Scott St	post develo	oment 3hr Cl	HI e txt	
	1	Equal length"				
	1 201	SCS method" Area Outletting to	Ditch"			
	51.000	% Impervious"				
	0.780 39.000	Total Area" Flow length"				
	5.000	Overland Slope"				
	0.382	Pervious Area"				
	39.000 5.000	Pervious length" Pervious slope"				
"	0.398	Impervious Area"				
	39.000 5.000	Impervious length" Impervious slope"				
	0.250	Pervious Manning '	n'"			
	80.000	Pervious SCS Curve	No."			
	0.552 0.079	Pervious Runoff co Pervious Ia/S coef				
	4.997	Pervious Initial a	bstraction"			
	0.013 98.000	Impervious Manning Impervious SCS Curv				
	0.937	Impervious Runoff	coefficient"			
	0.193	Impervious Ia/S co				
	1.000	Impervious Initial 0.328 0.0			c.m/sec"	
"		tchment 201	Pervious	Impervious	Total Area	
		rface Area me of concentration	0.382 9.802	0.398 1.340	0.780 4.397	hectare" minutes"
	ті	me to Centroid	98.491	84.862	89.786	minutes"
	Ra	infall depth infall volume	93.661 357.97	93.661 372.58	93.661 730.56	mm'' ⊂.m''
	Ra	infall losses	41.998	5.909	23.593	mm''
	Ru	noff depth noff volume	51.663	87.752 349.08	70.069	mm"
		noff coefficient	197.46 0.552	0.937	546.54 0.748	c.m"
" " 40	Ма	ximum flow	0.131	0.234	0.328	c.m/sec"
" 40	нү 4	DROGRAPH Add Runoff Add Runoff "				
"		0.328 0.3		0.000"		
" 40	НҮ 2	DROGRAPH Start - New Start - New Tributa				
"		0.328 0.00		0.000"		
" 33	CA 2	TCHMENT 2" Rectangular"				
	1	Equal length"				
"	1 2	SCS method"	Catchmont on	Wastorn Dr	oporty limit	t outlatting to
202"	2	(#EXT 2) External	catchinent on	western Pro	эрегсу стшт	
	0.000	% Impervious"				
	0.090 25.000	Total Area" Flow length"				
	2.000	Overland Slope"				
	0.090 25.000	Pervious Area" Pervious length"				
"	2.000	Pervious slope"				
	0.000 25.000	Impervious Area" Impervious length"				
"	2.000	Impervious slope"				
	0.250	Pervious Manning '	n'"			
	80.000 0.552	Pervious SCS Curve Pervious Runoff co	NO. efficient"			
"	0.079	Pervious Ia/S coef	ficient"			
	4.997 0.013	Pervious Initial al Impervious Manning	bstraction" 'n'"			
	0.013		Page 2			

	40	100yr 20 Scott St 98.000 Impervious SCS Cur 0.000 Impervious Runoff 0.193 Impervious Ia/S co 1.000 Impervious Initial 0.031 0.0 Catchment 2 Surface Area Time of concentration Time to Centroid Rainfall depth Rainfall volume Rainfall losses Runoff depth Runoff volume Runoff coefficient Maximum flow HYDROGRAPH Add Runoff 4 Add Runoff "	ve No." coefficient" abstraction 00 0.000 Pervious 0.090 9.881 98.554 93.661 84.30 41.998 51.663 46.50 0.552 0.031		HI e txt Total Area 0.090 9.881 98.554 93.661 84.30 41.998 51.663 46.50 0.552 0.031	" hectare" minutes" mm" c.m" mm" c.m" c.m/sec"
			31 0.000	0.000"		
	33	CATCHMENT 202"	51 0.000	0.000		
"	55	2 Rectangular"				
"		1 Equal length"				
"		1 SCS method"	+			
		202 Section Outletting 30.000 % Impervious"	to Scott St			
"		0.390 Total Area"				
"		58.200 Flow length"				
"		5.000 Overland Slope"				
		0.273 Pervious Area" 58.200 Pervious length"				
"		5.000 Pervious slope"				
"		0.117 Impervious Area"				
		58.200 Impervious length"				
		5.000 Impervious slope"	n'''			
		0.250 Pervious Manning ' 80.000 Pervious SCS Curve	NO "			
"		0.552 Pervious Runoff co				
		0.079 Pervious Ia/S coef	ficient"			
		4.997 Pervious Initial a	bstraction"			
		0.013 Impervious Manning 98.000 Impervious SCS Cur	ve No "			
"		0.937 Impervious Runoff	coefficient"			
		0.193 Impervious Ia/S co	efficient"			
		1.000 Impervious Initial 0.122 0.0		0 000	c.m/sec"	
		0.122 0.0 Catchment 202	31 0.000 Pervious		Total Area	
"		Surface Area	0.273	0.117	0.390	hectare"
"		Time of concentration		1.704	7.931	minutes"
		Time to Centroid Rainfall depth	100.798 93.661	84.953 93.661	94.123 93.661	minutes" mm"
"		Rainfall volume	255.70	109.58	365.28	c.m"
"		Rainfall losses	41.998	5.909	31.171	mm''
"		Runoff depth	51.663	87.752	62.490	mm''
		Runoff volume	141.04	102.67	243.71	c.m"
		Runoff coefficient Maximum flow	0.552 0.078	0.937 0.069	0.667 0.122	c.m/sec"
"	40	HYDROGRAPH Add Runoff	"		-	,
		4 Add Runoff "				
	40	0.122 0.1		0.000"		
	40	HYDROGRAPH Start - Ne 2 Start - New Tribut	arv"			
"		0.122 0.0		0.000"		
"	33	CATCHMENT 203"				
			Page 3			

 	2 1 1	100yr 20 Scott S Rectangular" Equal length" SCS method"	st post	develop	oment 3hr Cl	HI e txt	
"	203	Area Outletting t	o Crozi	er St"			
"	10.000	% Impervious"					
"	0.030	Total Area"					
"	100.000	Flow length"					
"	2.000	Overland Slope"					
"	0.027	Pervious Area"					
"	100.000	Pervious length"					
	2.000	Pervious slope"					
	0.003	Impervious Area"					
	100.000	Impervious length					
	2.000	Impervious slope"	1				
	0.250	Pervious Manning	n'n				
	80.000 0.552	Pervious SCS Curv Pervious Runoff c	'e NO.	ont"			
	0.079	Pervious Ia/S coe					
	5.000	Pervious Initial	abstrac	tion"			
	0.013	Impervious Mannin					
	98.000	Impervious SCS Cu					
"	0.937	Impervious Runoff	coeffi	cient"			
"	0.193	Impervious Ia/S c	oeffici	ent"			
"	1.000	Impervious Initia			I		
"			000	0.000		c.m/sec"	
"	Ca	tchment 203	Perv	ious		Total Area	
"		rface Area	0.02		0.003	0.030	hectare"
		me of concentratio			3.104	19.590	minutes"
		me_to_Centroid	109.		85.613	105.718	minutes"
		infall depth	93.6		93.661	93.661	mm''.
		infall volume	25.2		2.81	28.10	c.m"
		infall losses	42.0		5.909	38.391	mm''
		noff depth	51.6		87.752	55.270	mm''
		noff volume	13.9 0.55		2.63	16.58	c.m"
		noff coefficient ximum flow	0.00		0.937 0.002	0.590 0.006	c m/coc"
		DROGRAPH Add Runof	÷f "	5	0.002	0.000	c.m/sec"
	40 11	Add Runoff "	1				
"	r		006	0.000	0.000"		
		0.000 01		2.000	0.000		

			25mm 20 Scott	St post	develop	ment 3hr CH	II a txt	. "
"			MIDUSS Output MIDUSS version			V	ersion 2.25	rev. 473"
"		10	MIDUSS created Units used:				Februa	ry 7, 2010" ie METRIC"
			Job folder:	MTD		Users\milto	on.swm\Desk	top\Other\"
"	31	TI	ME PARAMETERS"	MLD	JSS FIIG	es\zu scott	St\Prelimi	nary Model"
		5.000 240.000	Time Step" Max. Storm lengt	·h''				
"		3000.000	Max. Hydrograph'	1				
	32	ST 1	ORM Chicago storn Chicago storm"	1''				
		513.000	Coefficient A"					
		7.000 0.800	Constant B" Exponent C"					
		0.400 240.000	Fraction R" Duration"					
"		1.000	Time step multip	lier"				
			ximum intensity tal depth		67.60 25.00			
" "	~ ~	6	025hyd Hydrogr	aph ext		used in this	s file"	
	33	CA 2	TCHMENT 1" Rectangular"					
		1 1	Equal length" SCS method"					
"		1	(#EXT 1) West Ex	ternal (Catchmer	nt Outletti	ng to Catch	ment 201"
		0.000 0.030	% Impervious" Total Area"					
		50.000	Flow length"					
		$ \begin{array}{r} 10.000 \\ 0.030 \end{array} $	Overland Slope" Pervious Area"					
		50.000 10.000	Pervious length' Pervious slope"	1				
"		0.000	Impervious Area'	·				
		50.000 10.000	Impervious lengt Impervious slope					
		0.250	Pervious Manning	ı'n'"				
"		80.000 0.191	Pervious SCS Cur Pervious Runoff		ient"			
		0.079 5.016	Pervious Ia/S co Pervious Initial					
" "		0.013	Impervious Manni	ng 'n'"				
		98.000 0.000	Impervious SCS C Impervious Runof	Curve No	." icient"			
		0.193 1.000	Impervious Ia/S Impervious Initi	coeffic	ient"			
"			0.000 0	.000	0.000	0.000	c.m/sec"	
			tchment 1 rface Area	Per 0.0	vious 30	Impervious 0.000	Total Area 0.030	" hectare"
		тi	me of concentrati	on 23.	724	2.095	23.724	minutes"
"			me to Centroid infall depth	25.0		118.347 25.005	153.334 25.005	minutes" mm"
			infall volume infall losses	7.5 20.2		0.00 5.264	7.50 20.219	c.m" mm"
" "		Ru	noff depth	4.7	85	19.741	4.785	mm''
			noff volume noff coefficient	$1.44 \\ 0.19$		0.00 0.000	1.44 0.191	c.m"
	40	Ма	ximum flow	0.0		0.000	0.000	c.m/sec"
"	40	нү 4	DROGRAPH Add Runc Add Runoff "					
	33	CA	0.000 (TCHMENT 201"	.000	0.000	0.000"		
"	55	2	Rectangular"	_				
				P	age 1			

		25mm 20 Scott St	nost dovolor	mont thr Cu	$IT \rightarrow \pm y \pm$	
	1	Equal length"	post develop		μα ιχι	
"	1	scs method"				
	201	Area Outletting to	Ditch"			
	51.000	% Impervious"				
	0.780 39.000	Total Area" Flow length"				
	5.000	Overland Slope"				
	0.382	Pervious Area"				
	39.000	Pervious length"				
	5.000 0.398	Pervious slope" Impervious Area"				
	39.000	Impervious length"	I Contraction of the second			
	5.000	Impervious slope"				
	0.250	Pervious Manning '	n'" "			
	80.000	Pervious SCS Curve				
	0.191 0.079	Pervious Runoff co Pervious Ia/S coef				
	5.016	Pervious Initial a	bstraction"			
	0.013	Impervious Manning	ı'n'"			
	98.000	Impervious SCS Cur				
	0.789 0.193	Impervious Runoff Impervious Ia/S co				
"	1.000	Impervious Initial	abstraction			
		0.069 0.0	000.0	0.000	c.m/sec"	
		tchment 201	Pervious		Total Area	
		rface Area me of concentration	0.382 25.163	0.398 2.222	0.780 6.556	hectare" minutes"
	ті	me to Centroid	154.662	118.422	125.268	minutes"
	Ra	infall depth	25.005	25.005	25.005	mm''
		infall volume infall losses	95.57 20.219	99.47 5.263	195.04 12.592	с.m" mm"
		noff depth	4.785	19.741	12.413	mm''
	Ru	noff volume	18.29	78.53	96.82	c.m"
		noff coefficient	0.191	0.789	0.496	" ~ m/coc"
" 40	ма НҮ	ximum flow DROGRAPH Add Runoff	0.005	0.066	0.069	c.m/sec"
	4	Add Runoff "				
" 40		0.069 0.0		0.000"		
" 40	нү 2	DROGRAPH Start - Ne Start - New Tribut				
		0.069 0.0		0.000"		
" 33		TCHMENT 2				
	2	Rectangular"				
	1 1	Equal Tength" SCS method"				
	2	(#EXT 2) External	Catchment on	Western Pro	operty Limi	t Outletting to
202"	0 000					-
	0.000 0.090	% Impervious" Total Area"				
	25.000	Flow length"				
	2.000	Overland Slope"				
	0.090	Pervious Area"				
	25.000 2.000	Pervious length" Pervious slope"				
	0.000	Impervious Area"				
	25.000	Impervious length"	1			
	2.000 0.250	Impervious slope" Pervious Manning '	n'"			
"	80.000	Pervious SCS Curve				
	0.191	Pervious Runoff co	efficient"			
	0.079 5.016	Pervious Ia/S coef				
	0.013	Pervious Initial a Impervious Manning	'n'"			
			Page 2			

	40	25mm 20 Scott St 98.000 Impervious SCS Cur 0.000 Impervious Runoff 0.193 Impervious Ia/S co 1.000 Impervious Initial 0.001 0.0 Catchment 2 Surface Area Time of concentration Time to Centroid Rainfall depth Rainfall volume Rainfall losses Runoff depth Runoff volume Runoff coefficient Maximum flow HYDROGRAPH Add Runoff 4 Add Runoff "	ve No." coefficient" abstraction 00 0.000 Pervious 0.090 25.367 154.860 25.005 22.50 20.219 4.785 4.31 0.191 0.001	.000	NI a txt Total Area 0.090 25.367 154.859 25.005 22.50 20.219 4.785 4.31 0.191 0.001	" hectare" minutes" mm" c.m" mm" c.m" c.m/sec"
		4 Add Runott 0.001 0.0	01 0.000	0.000"		
	33	CATCHMENT 202"	01 0.000	0.000		
	55	2 Rectangular"				
"		1 Equal length"				
		1 SCS method"				
		202 Section Outletting 30.000 % Impervious"	το Scott St			
"		0.390 Total Area"				
"		58.200 Flow length"				
"		5.000 Overland Slope"				
		0.273 Pervious Area" 58.200 Pervious length"				
"		5.000 Pervious slope"				
"		0.117 Impervious Area"				
		58.200 Impervious length"				
		5.000 Impervious slope" 0.250 Pervious Manning '	n'''			
		0.250 Pervious Manning ' 80.000 Pervious SCS Curve	NO "			
"		0.191 Pervious Runoff co	efficient"			
		0.079 Pervious Ia/S coef	ficient"			
		5.016 Pervious Initial a	bstraction"			
		0.013 Impervious Manning 98.000 Impervious SCS Cur	ri Ve No "			
"		0.789 Impervious Runoff	coefficient"			
		0.193 Impervious Ia/S co	efficient"			
		1.000 Impervious Initial				
		0.021 0.0 Catchment 202	01 0.000 Pervious		c.m/sec" Total Area	
"		Surface Area	0.273	0.117	0.390	hectare"
		Time of concentration	31.994	2.826	13.364	minutes"
"		Time to Centroid	161.083	118.855	134.111	minutes"
		Rainfall depth Rainfall volume	25.005 68.26	25.005 29.26	25.005 97.52	mm" c.m"
		Rainfall losses	20.219	5.263	15.732	mm''
"		Runoff depth	4.785	19.741	9.272	mm''
		Runoff volume	13.06	23.10	36.16	c.m"
		Runoff coefficient Maximum flow	0.191 0.003	0.789 0.019	0.371 0.021	
	40	HYDROGRAPH Add Runoff	"	0.019	0.021	C. III/ SEC
"		4 Add Runoff "				
	4.0	0.021 0.0		0.000"		
	40	HYDROGRAPH Start - Ne 2 Start - New Tribut				
		2 Start - New Tribut 0.021 0.0		0.000"		
"	33	CATCHMENT 203"	0.000	01000		
			Page 3			

	z Rectangular	
"	' 0.030 Total Area"	
"		
"	' 2.000 Overland Slope"	
"	' 0.027 Pervious Area"	
"	' 100.000 Pervious length"	
"		
"	' 0.003 Impervious Area"	
	100.000 Impervious length	
	' 2.000 Impervious slope"	
	0.250 Pervious Manning n	
	80.000 Pervious SCS Curve No.	
	0.191 Pervious Runott Coetticient	
	0.079 Pervious Id/S coefficient	
	5.016 Pervious initial abstraction	
	0.013 Impervious Manning n	
	' 98.000 Impervious SCS Curve No." ' 0.789 Impervious Runoff coefficient"	
	' 0.193 Impervious Ia/S coefficient"	
		tare"
"		utes"
"		utes"
"	' Rainfall depth 25.005 25.005 25.005 mm"	
"	' Rainfall volume 6.75 0.75 7.50 c.m	,''
"	' Rainfall losses 20.219 5.263 18.724 mm"	
	RUNOTT depth 4.785 19.741 6.281 mm	
	' Runoff volume 1.29 0.59 1.88 c.m	"
	RUNOTT COETTICIENT 0.191 0.789 0.251	<i>,</i>
	' Maximum flow 0.000 0.001 0.001 c.m	i/sec"
	4 Add RUNOTT	
	0.001 0.001 0.000 0.000"	

Worksheet for Site Outlet Channel to Thomasfield

Project Description		
Friction Method	Manning Formula	
Solve For	Discharge	
Input Data		
Roughness Coefficient	0.02	5
Channel Slope	0.3000	D %
Normal Depth	0.3) m
Left Side Slope	3.0	D m/m (H:V)
Right Side Slope	3.0	D m/m (H:V)
Bottom Width	1.0) m
Results		
Discharge	0.4	2 m³/s
Flow Area	0.5	⁷ m ²
Wetted Perimeter	2.9) m
Hydraulic Radius	0.2) m
Top Width	2.8) m
Critical Depth	0.2	l m
Critical Slope	0.0119	4 m/m
Velocity	0.7	1 m/s
Velocity Head	0.0	3 m
Specific Energy	0.3	3 m
Froude Number	0.5	2
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.0) m
Length	0.0) m
Number Of Steps)
GVF Output Data		
Upstream Depth	0.0) m
Profile Description		
Profile Headloss	0.0) m
Downstream Velocity	Infinit	/ m/s
Upstream Velocity	Infinit	/ m/s
Normal Depth	0.3) m
Critical Depth	0.2	l m
ontiour Dopan		

Bentley Systems, Inc. Haestad Methods Sol Betentl Gentew Master V8i (SELECTseries 1) [08.11.01.03]

27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

Worksheet for Site Outlet Channel to Thomasfield

GVF Output Data

Critical Slope

0.01194 m/m

Detailed Stormceptor Sizing Report – 20 Scott St

Project Information & Location					
Project Name	20 Scott St	Project Number	1559-5037		
City	Grand Valley	State/ Province	Ontario		
Country Canada		Date	2/25/2019		
Designer Information)	EOR Information (optional)			
Name	Chris Kwan	Name			
Company	C.F. Crozier and Associates	Company			
Phone # 905-875-0026		Phone #			
Email ckwan@cfcrozier.ca		Email			

Stormwater Treatment Recommendation

The recommended Stormceptor Model(s) which achieve or exceed the user defined water quality objective for each site within the project are listed in the below Sizing Summary table.

Site Name	20 Scott St	
Recommended Stormceptor Model	STC 1000	
Target TSS Removal (%)	80.0	
TSS Removal (%) Provided	80	
PSD	City of Toronto PSD	
Rainfall Station	WATERLOO WELLINGTON A	

The recommended Stormceptor model achieves the water quality objectives based on the selected inputs, historical rainfall records and selected particle size distribution.

Stormceptor Sizing Summary						
Stormceptor Model	% TSS Removal Provided	% Runoff Volume Captured Provided				
STC 300	68	85				
STC 750	78	94				
STC 1000	80	94				
STC 1500	80	94				
STC 2000	83	97				
STC 3000	85	97				
STC 4000	88	99				
STC 5000	88	99				
STC 6000	90	99				
STC 9000	93	100				
STC 10000	93	100				
STC 14000	95	100				
StormceptorMAX	Custom	Custom				

Stormceptor

The Stormceptor oil and sediment separator is sized to treat stormwater runoff by removing pollutants through gravity separation and flotation. Stormceptor's patented design generates positive TSS removal for each rainfall event, including large storms. Significant levels of pollutants such as heavy metals, free oils and nutrients are prevented from entering natural water resources and the re-suspension of previously captured sediment (scour) does not occur. Stormceptor provides a high level of TSS removal for small frequent storm events that represent the majority of annual rainfall volume and pollutant load. Positive treatment continues for large infrequent events, however, such events have little impact on the average annual TSS removal as they represent a small percentage of the total runoff volume and pollutant load.

Design Methodology

Stormceptor is sized using PCSWMM for Stormceptor, a continuous simulation model based on US EPA SWMM. The program calculates hydrology using local historical rainfall data and specified site parameters. With US EPA SWMM's precision, every Stormceptor unit is designed to achieve a defined water quality objective. The TSS removal data presented follows US EPA guidelines to reduce the average annual TSS load. The Stormceptor's unit process for TSS removal is settling. The settling model calculates TSS removal by analyzing:

- Site parameters
- · Continuous historical rainfall data, including duration, distribution, peaks & inter-event dry periods
- Particle size distribution, and associated settling velocities (Stokes Law, corrected for drag)
- TSS load
- · Detention time of the system

Hydrology Analysis

PCSWMM for Stormceptor calculates annual hydrology with the US EPA SWMM and local continuous historical rainfall data. Performance calculations of Stormceptor are based on the average annual removal of TSS for the selected site parameters. The Stormceptor is engineered to capture sediment particles by treating the required average annual runoff volume, ensuring positive removal efficiency is maintained during each rainfall event, and preventing negative removal efficiency (scour). Smaller recurring storms account for the majority of rainfall events and average annual runoff volume, as observed in the historical rainfall data analyses presented in this section.

Rainfall Station						
State/Province	Ontario	Total Number of Rainfall Events	2980			
Rainfall Station Name	WATERLOO WELLINGTON A	Total Rainfall (mm)	16119.1			
Station ID #	9387	Average Annual Rainfall (mm)	474.1			
Coordinates	43°27'N, 80°23'W	Total Evaporation (mm)	680.0			
Elevation (ft)	1028	Total Infiltration (mm)	8137.8			
Years of Rainfall Data	34	Total Rainfall that is Runoff (mm)	7301.3			

Notes

• Stormceptor performance estimates are based on simulations using PCSWMM for Stormceptor, which uses the EPA Rainfall and Runoff modules.

• Design estimates listed are only representative of specific project requirements based on total suspended solids (TSS) removal defined by the selected PSD, and based on stable site conditions only, after construction is completed.

• For submerged applications or sites specific to spill control, please contact your local Stormceptor representative for further design assistance.

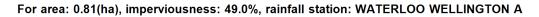
FORTERRA"

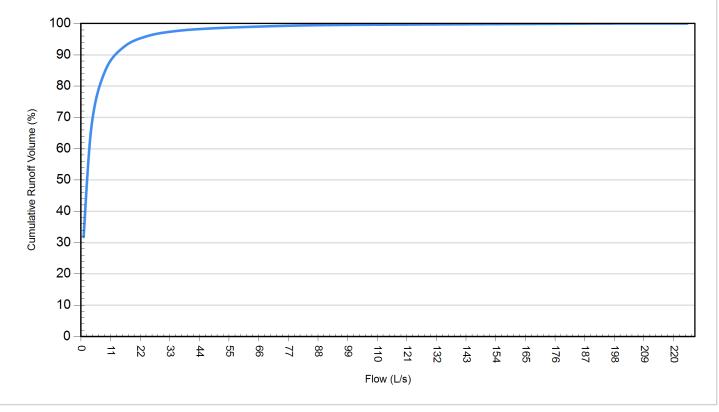
Drainage Area	
Total Area (ha)	0.81
Imperviousness %	49.0
Water Quality Objective	9
TSS Removal (%)	80.0
Runoff Volume Capture (%)	90.00
Oil Spill Capture Volume (L)	
Peak Conveyed Flow Rate (L/s)	69.00
Water Quality Flow Rate (L/s)	

Up Stre										
Storage (ha-m)	rge (cms)									
0.000	000									
Up Stream	on									
Max. Flow to Stormcer										
Desi										
Stormceptor Inlet Inve										
Stormceptor Outlet Inve										
Stormceptor Rim E	lev (m)									
Normal Water Level Ele	evation (m)									
Pipe Diameter (n										
Pipe Material										
Multiple Inlets ()	Multiple Inlets (Y/N)									
Grate Inlet (Y/I	N)	No								

Particle Size Distribution (PSD)

Removing the smallest fraction of particulates from runoff ensures the majority of pollutants, such as metals, hydrocarbons and nutrients are captured. The table below identifies the Particle Size Distribution (PSD) that was selected to define TSS removal for the Stormceptor design.

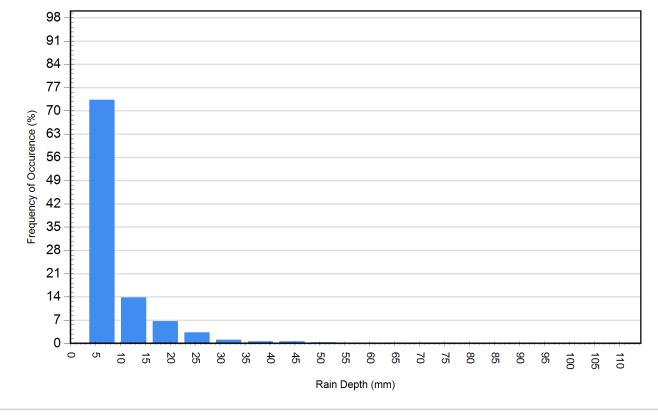

City of Toronto PSD												
Particle Diameter (microns)	Distribution %	Specific Gravity										
10.0	20.0	2.65										
30.0	10.0	2.65										
50.0	10.0	2.65										
95.0	20.0	2.65										
265.0	20.0	2.65										
1000.0	20.0	2.65										


Stormceptor [®]			F.	ORTERRA							
Site Name			20 Scott St								
	Site D	Detai	ils								
Drainage Area			Infiltration Parameters								
Total Area (ha)	0.81		Horton's equation is used to estimate	infiltration							
Imperviousness %	49.0		Max. Infiltration Rate (mm/hr)	61.98							
Surface Characteristics	5		Min. Infiltration Rate (mm/hr)	10.16							
Width (m)	180.00		Decay Rate (1/sec)	0.00055							
Slope %	2		Regeneration Rate (1/sec)	0.01							
Impervious Depression Storage (mm)	0.508		Evaporation								
Pervious Depression Storage (mm)	5.08		Daily Evaporation Rate (mm/day) 2.54								
Impervious Manning's n	0.015		Dry Weather Flow								
Pervious Manning's n	0.25		Dry Weather Flow (lps)	0							
Maintenance Frequency	y		Winter Months								
Maintenance Frequency (months) >	12		Winter Infiltration	0							
	TSS Loading	g Pa	irameters								
TSS Loading Function											
Buildup/Wash-off Parame	eters		TSS Availability Paramete	ers							
Target Event Mean Conc. (EMC) mg/L			Availability Constant A								
Exponential Buildup Power			Availability Factor B								
Exponential Washoff Exponent			Availability Exponent C								
		M	lin. Particle Size Affected by Availability (micron)								

FORTERRA"

	Cumulative Runof	f Volume by Runoff R	ate
Runoff Rate (L/s)	Runoff Volume (m ³)	Volume Over (m ³)	Cumulative Runoff Volume (%)
1	18940	40614	31.8
4	40286	19267	67.7
9	50555	8996	84.9
16	55123	4427	92.6
25	57198	2352	96.1
36	58162	1388	97.7
49	58657	893	98.5
64	58951	599	99.0
81	59165	384	99.4
100	59314	235	99.6
121	59394	155	99.7
144	59456	93	99.8
169	59511	38	99.9
196	59533	16	100.0
225	59544	5	100.0

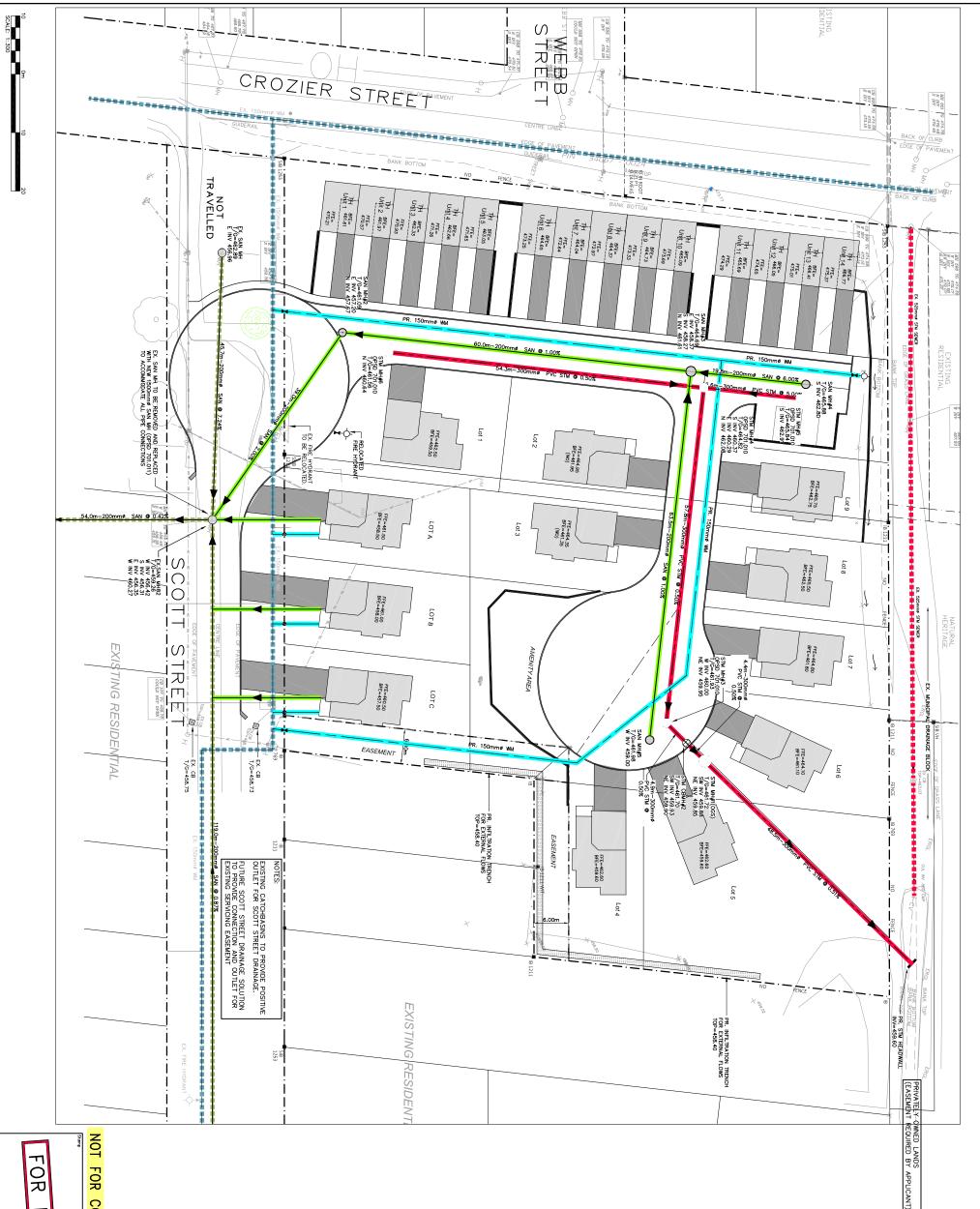
Cumulative Runoff Volume by Runoff Rate



Stormceptor Detailed Sizing Report - Page 5 of 6

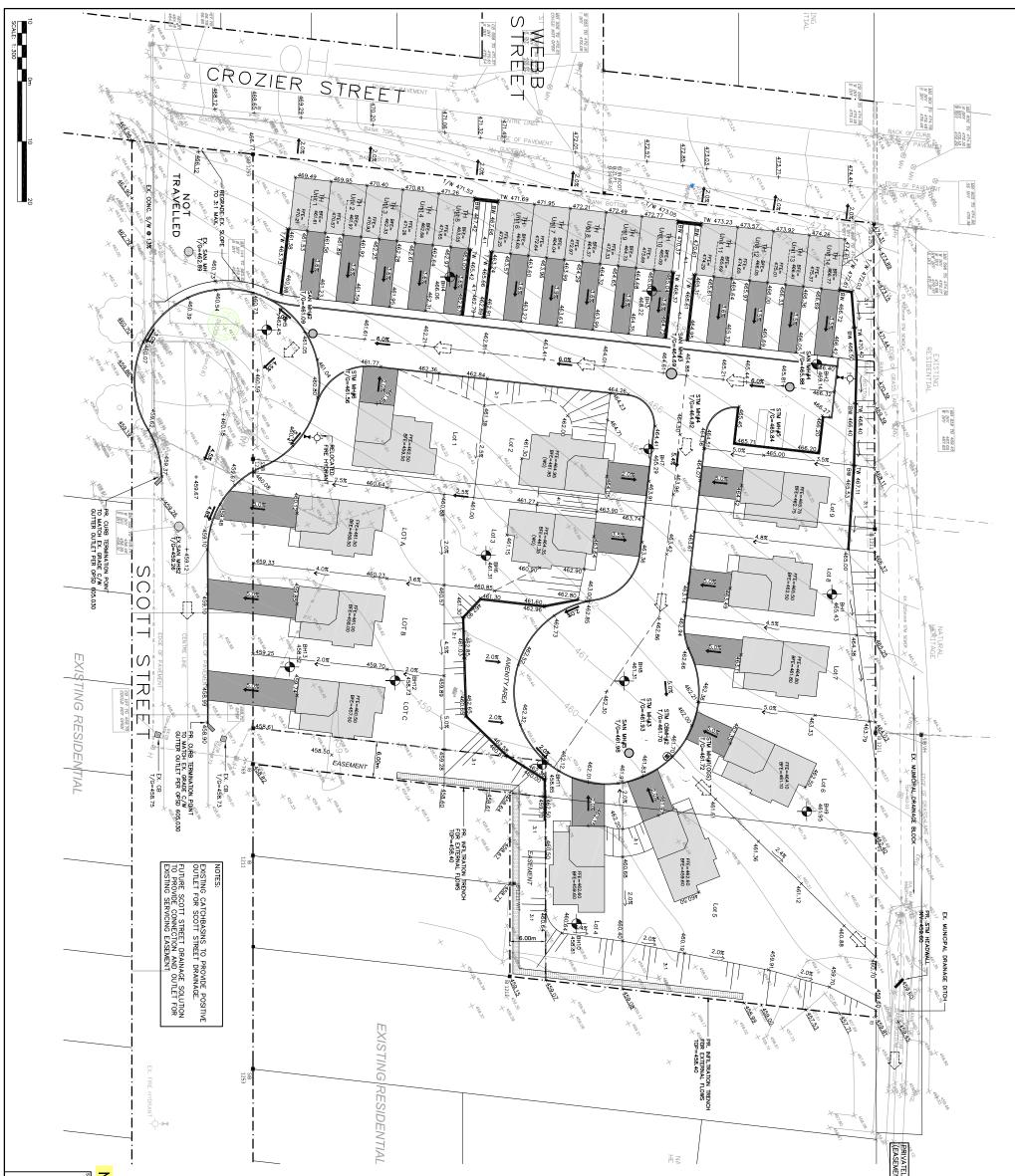
FORTERRA"

Rainfall Event Analysis													
Rainfall Depth (mm)	No. of Events	Percentage of Total Events (%)	Total Volume (mm)	Percentage of Annual Volume (%)									
6.35	2184	73.3	3643	22.6									
12.70	411	13.8	3779	23.4									
19.05	199	6.7	3108	19.3									
25.40	97	3.3	2102	13.0									
31.75	34	1.1	964	6.0									
38.10	17	0.6	590	3.7									
44.45	18	0.6	723	4.5									
50.80	8	0.3	380	2.4									
57.15	4	0.1	212	1.3									
63.50	0	0.0	0	0.0									
69.85	4	0.1	267	1.7									
76.20	0	0.0	0	0.0									
82.55	0	0.0	0	0.0									
88.90	3	0.1	256	1.6									
95.25	1	0.0	93	0.6									
101.60	0	0.0	0	0.0									
107.95	0	0.0	0	0.0									


Frequency of Occurence by Rainfall Depths

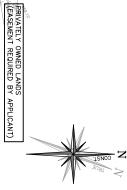
For Stormceptor Specifications and Drawings Please Visit: http://www.imbriumsystems.com/technical-specifications

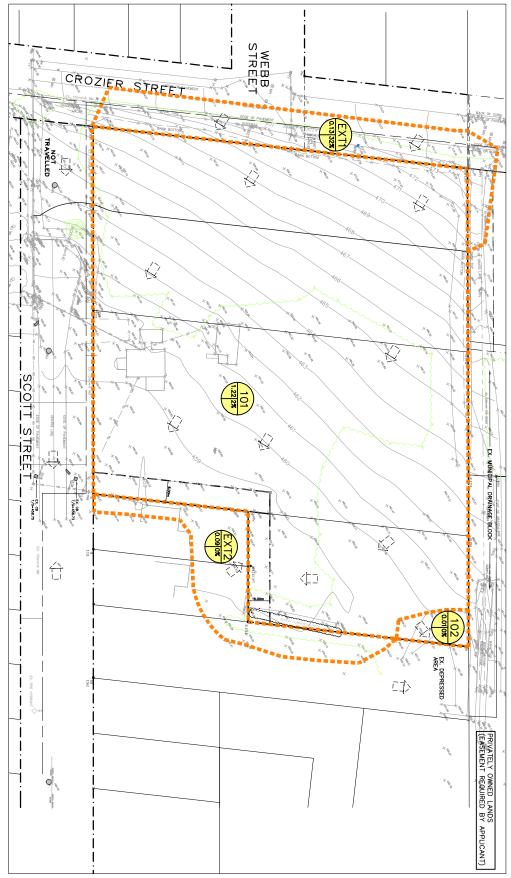
Stormceptor Detailed Sizing Report - Page 6 of 6


FIGURES

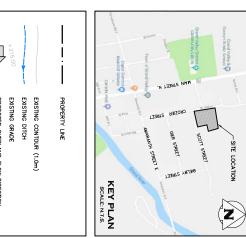
FOR REVIEW	NOT FOR CONSTRUCTION																			
	PRELIMINARY	PROPOSED F	DEXAMING NOTES: THIS DERAMING IS THE EXCLUS THE REPRODUCTION OF ANY P OFFICE IS STRICTLY PROHIBITE REPORT ANY DISCREPANCES OF THIS DRAMING IS TO BE READ THIS DRAMING IS TO BE READ PLANS AND DOCUMENTS APPL ALL EXISTING UNCERERGOUND CONST	<u>S</u> ; ARE BASED IG (2019/MAR/	TOPOGRAPHIC SURVEY PREPAR TOPOGRAPHIC SURVEY 29, 2019. DATED JANUARY 29, 2019. BEARINGS ARE UTM GRID BEAR ARE REFERRED TO THE UTM ZONE 17, NAD 83 (CSRS), EP ZONE 17, NAD 84 (CSRS), EP ZONE 17, NAD 85 (CSRS), EP	ELEVATION NOTE: ELEVATIONS ARE RELATED TO 1 LOCAL BENCHMARK WAS ESTAB ON SCOTT STREET, SOUTH OF SUBVEY NOTES:	No. ISSUE / REVISION	0 ISSIED FOR FIRST SHE	w/o				(() () () () () () () () () () () () ()	ŝ	 X	X				Garad
Consulting Engineers and the Kale/Alk Soot	SERVIO	N RESIDENTIAL DEVELOPMENT 20 SCOTT STREET NN OF GRAND VALLEY	THE DRAMME ANDES: THE BERFOLDTING OF ANY PART OF IT WHOLT FROM WHITEN CONSENT OF THE BEFFOLDTING OF ANY PART OF IT WHOLT FROM WHITEN CONSENT OF THE OFFICE IS SINCTLY FARMED AND ADDRESS LEELS, AND DATURS ON SITE AND REPORT ANY DISCREPANCES OR UNUSIONS TO THE SOFTICE FROM TO CONSENUTION. THIS DRAMING IS TO BE FRAD AND UNDERSTOOD IN CONSENUTION. THIS DRAMING IS TO BE FRAD AND UNDERSTOOD IN CONSENUTION. THIS DRAMING IS TO BE FRAD AND UNDERSTOOD IN CONSENUTION. ALL DOSTING UNDERRADOND UNLITES TO BE VERIFIED IN THE FIELD BY THE CONTRACTOR FROM TO CONSTRUCTION.	ON DEVELOPMENT CONCEPT PLAN BY	DUCORAMME SINGLY REPARED BY VAN HARTEN SURVEYNG AND ENGNEERING, DUCORAMMERYDS, YELANNES, ND ARE DEDIED FROM CYS GREEDWINDS, AND REFERENDED ON HE UNA FRONCTON, CENTRAL MERIDAM BYO' W LONGITUE. ARE FERENDED ON LONGINE, FROM 2010, CENTRAL MERIDAM BYO' W LONGITUE. SORT 17, MD 83 (SSS), FROM 2010 USIANCES ARE GRAUN AND CAN BE CONVERTED TO GRID BY MULTIPLYNG BY THE COMBINED SALE FACTOR OF 0.989759	LEEVANDA VERE BUTTED TO THE CANDAN GEDERIC VERTCAL DATUM 1972. A DEDATIONS ARE RELATED TO THE CANDAN GEDERIC VERTCAL DATUM 1972. A UCAL BECHMERK INS ESTABLED ON THE TOP NUT OF A FIRE HODAWT, LOCATED ON SCOTT STREET, SOUTH OF LOT A, HANNO AN ELEVATION OF 480.87 m.		NOISSIM	PROPOSED WALK-OUT UNIT	PROPOSED RETAINING WALL		PROPOSED SINGLE / DOUBLE CATCHBASIN PROPOSED SANITARY SEWER & MANHOLE	PROPOSED BACKFLOW PREVENTOR PROPOSED STORM SEWER & MANHOLE		FIRE HYDRANT	PROPOSED WATERMAIN & GATE VALVE	EXISTING SINGLE / DOUBLE CATCHBASIN EXISTING SANITARY SEVER & MANHOLE	EXISTING WATERMAIN & GATE VALVE EXISTING STORM SEVER & MANHOLE	PROPERTY LINE	
MLTRA LOAD LAT EF4 9058754015 F WWW.CFGROZIER.CA 1559-55037 Imp FIG 1	PLAN	EY	: ASSOCIATES INC. AND IN CONSENT OF THIS DATUMS ON SITE AND IOR TO CONSTRUCTION. ON WITH ALL OTHER I SOLIE THIS DRAWING. TELD BY THE	4 BY	AND ENGINEERING, S OBSERVATIONS AND 1'00' W LONGITUDE, MULTIPLYING BY THE	DATUM 1972. A RE HYDRANT, LOCATED 460.67 m.	YYYY/MMM/DD	2019 /MAR /15		ALL	ATERAL (125mmø)	CATCHBASIN & MANHOLE	ENTOR MANHOLE	CTION	LATERAL (XXmmø) & GATE VALVE	ATE VALVE	XATCHBASIN	GATE VALVE & MANHOLE		SCALE: N.T.S.

LOCA.


Z


		FOR REVIEW	NOT FOR CONSTRUCTION							_													
EXISTING FERCE ENSTING GRADE EXISTING GRADE EXISTING GRADE PROPOSED GRADE PROPOSED GRADE PROPOSED WING FLOW IN PROPOSED KITTANCE (TO WI PROPOSED KITTANCE (CORE PROPOSED KITTANCE (CORE PROPOSED FIRMING COREFIL PROPOSED FIRMING COREFIL PROPOSED WILL-OUT UN PROPOSED WILL-OUT UN PROPOSED WILL-OUT UN COLOR ON THE COREFIL FIRMING CONFIL DIRESSONS, LEVELS, AN PROPOSED WILL-OUT UN CONFILTION CONCEPT IN CONFILTION CONCEPT IN			PRELIMIN	IAN	DEAMING NOTES: THIS DRAWNG IS THE EXCLUS THE REPRODUCING OF ANY F THE REPRODUCING OF ANY F OFFICE IS STRUCTLY PROMISE THE CONTRACTOR SHALL VER REPORT ANY DISCREPANCIES IS THIS DRAWING IS TO BE READ THIS DRAWING IS TO BE READ THIS DRAWNG IS TO BE READ USE THIS DRAWNG IN CONSTRUCTION OF A CONTRACTOR PRIOR TO CONST	SITE PLAN NOTES: DESIGN ELEMENTS ARE BASED WESTON CONSULTING DRAWING No.: C3 (2019/MAR, FILE No.: 8947	TOPOGRAPHIC SURVEY PREPAI TOPOGRAPHIC SURVEY PREPAI DATED JANUARY 29, 2019 BEARINGS ARE UTM GRID BEA BECARINGS ARE UTM GRID BEA ARE REFERRED TO THE UTM & ZONE 17, NAD 83 (CSRS), EF ZONE 17, NAD 83 (CSRS), EF COMBINED SCALE FACTOR OF	ELEVATION NOTE: ELEVATIONS ARE RELATED TO LOCAL BENCHMARK WAS ESTAT ON SCOTT STREET, SOUTH OF	ISSUED FOR FIRST	-	W/0	•		ø.	ļv	▼			2.0%	×215.00 2.0%	×215.00	— x — x — x —	
ECTOPY ENSTABLE NO ENVIRENTIAL DOOR) RECONON E AREA L L AXX) SONNEL DOOR) RELEA DOOR) RELEA DOOR) RELEA DOOR) RELEA DOOR) RELEA NO DIRECTION LANSFORMER A CATE VALVE L DANNERRIVAERING A CATE VALVE L DANNERRIVAERING A CATE VALVE L DANNERRIVAERING A CATE VALVE L DANNERRIVAERING A CATE VALVE AND ENDINEERING T T T CELOPMENT CONSIST OF THIS SUBJECTOR A CATE AND ENDINEERING A CATE VALVE RECOVERING A CATE VALVE A CATE VALVE A CATE VALVE RECOVERING A CATE VALVE A CATE A CATE VALVE A CAT	Project No. 1559- Scole Dwg.		GRADING	RESIDENTIAL DEVELOPMENT 10 SCOTT STREET 1 OF GRAND VALLEY	WE PROPERTY OF C.F. CROZER & ASSOCATES DAT OF TIMITIOUT PRICE WRITEN CONSENT FOR OMISSIONS, LEVELS, AND DATUMS ON FOR OMISSIONS TO THIS OFFICE PRIOR TO COM- CANDE UNDERSTOOD IN COMUNICATURE AND UNDERSTOOD IN COMUNICATURE AUDITION TO BE VERIFED IN THE FIELD BY THE RUCTION.	ON DEVELOPMENT CONCEPT PLAN BY 705)	ED BY VAN HARTEN SURVEYNG AND ENGNEE NNGG AND AGE DERNED FROM OGS OBSERNIT ROUGETOON, CENTRAL MERDIAN BYTOO'N LOW ROUGH ZOTO, CAN BE COUVERTED TO GRID BY MULTIPLYNG 0.999759	THE CANADIAN GEODETIC VERTICAL DATUM 1973 BISHED ON THE TOP NUT OF A FIRE HYDRANT, LOT A, HAVING AN ELEVATION OF 460.67 m.		-	PROPOSED WALK-OUT UNIT	BOREHOLE LOCATION PER PLAN PREPARED BY CHUNG & VANDER DOELEN ENGINEERING LTD. DATED, FEBRUARY 2019 - FILE No. G17440	PROPOSED FIRE HYDRANT & GATE VALVE	PROPOSED MAJOR OVERLAND FLOW DIRECTION PROPOSED ELECTRICAL TRANSFORMER	BUILDING ENTRANCE (OVERHEAD DOOR)	PROPOSED SLOPE (3:1 MAX.) BUILDING ENTRANCE (PERSONNEL DOOR	PROPOSED RETAINING WALL	EXTENTS OF SURFACE	PROPOSED GRASSED SWALE	PROPOSED GRADE (TO MATCH EXISTING) PROPOSED MINOR FLOW DIRECTION	PROPOSED GRADE	EXISTING FENCE EXISTING GRADE	EXISTING DITCH

LEGEND PROPERTY LINE EXISTING CONTOUR (0.5m)



SCALE: 1:500

-	FOR REVIEW	NOT FOR CONSTRUCTION										
	Dome M.I.M. Device B.W. Power No. 1559-50.23 F Oread S.C. Dread K.J.F./J.K. Some T559-50.37	EXISTING & PROPOSED DRAINAGE PLAN	PROPOSED RESIDENTIAL DEVELOPMENT 20 SCOTT STREET TOWN OF GRAND VALLEY	DRAMMIC NOTES THE DRAMMIC IS THE EXCLUSIVE PROPERTY OF C.F. CROZER & ASSOCIATES INC. AND THE REFRONCION OF FAINT PART OF IT WITHOUT PROGR WRITTEN COSSENT OF THIS OFFICE IS STRICTLY PROHIBITED. THE CONTRACTOR SHALL VERFY ALL DIRENSIONS, LEVELS, AND DATUMS ON STIE. AND REFORT ANY DISCREPANCIES OF OMESSIONS TO THIS OFFICE PROR TO CONSTRUCTION. THIS DRAMMIC IS TO BE READ AND UNDERSTOOD UNDERSTOOD IN OKAUNCTION WITH ALL OTHER PLANS AND DOCUMENTS APPLICABLE TO THIS PROLECT. OD NOT SCALE THIS DRAMMIC, ALL EXISTING UNDERSTOOD UNDERSTOOD IN THE FIELD BY THE CONTRACTOR PROR TD CONSTRUCTION.	DPOGRAPHIC SURVEY PREPARED BY VAN HARTEN SURVEYING AND ENGINEERING, DATED JANUIARY 23 (2019) BEARINGS ARE (JUN GRID ERAINGS AND ARE DERIVED FROM GPS GBEERWATIONS AND ARE REFERED TO LEVING AND CARE DERIVED FROM GPS UNDRITUDE, ZOUE 17, WID B3 (CSRS), EPOCH 2010. DISTANCES ARE GROUND AND CAN BE CONVERTED TO GRID BY MULTIPLYING BY THE COMBINED SCALE FACTOR OF 0.999759 SUIT_PLAN, NOTES DEGON LEJARDYS ME BASED ON DEVELOPMENT CONCEPT FLAN BY MESTON CONSULTING BASED ON DEVELOPMENT CONCEPT FLAN BY DRAWING NG: CG 7 (2019/MAR/OS) PLE NG: 9847	LEAVAILVET NULE ELEMANDS ARE RELATED TO THE CAMOUN GEODETIC VERTICAL DATUM 1972. A LOCAL ENCHMARK WAS ESTABLED ON THE TOP NIT OF A FIRE HYDRAHT, LOCATED ON SCOTT STREET, SOUTH OF LOT A, HAWNG AN ELEMATION OF 460.67 m. SURVEY NOTES.	ISION YYYY	ISSIED FOR FIRST	Allep CATCHMENT LD. Allep AREA (h-a) PERCENT IMPERVIOUS (%)	EXISTING CONTOUR (1.0m) EXISTING DITCH EXISTING GRADE PROPOSED OVERLAND FLOW DIRECTION	PROPERTY LINE	Literative Control of State NTS

