Corseed Residential Subdivision

Town of Grand Valley County of Dufferin

Traffic Impact Study for Corseed Inc.

> Type of Document: Final Report

> > **Project Number:** JDE - 1417

Date Submitted: July 22nd, 2015
Revised December 21st, 2016
Revised March 22nd, 2018
Revised October 10th, 2018 Revised June 19th, 2019

John Northcote, P.Eng.

Professional License #: 100124071

JD Northcote Engineering Inc. 86 Cumberland Street

Barrie, ON 705.725.4035 www.JDEngineering.ca

Legal Notification

This report was prepared by **JD Northcote Engineering Inc.** for the account of **Corseed Inc.**

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. **JD Northcote Engineering Inc.** accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this project.

Executive Summary

This report summarizes the traffic impact study prepared for the proposed 14.9 hectare Corseed Subdivision, located west of County Road 25, across from Industrial Drive. The report assesses the impact of traffic related to the development on the adjacent roadways and provides recommendations to accommodate this traffic in a safe and efficient manner.

The proposed Corseed Subdivision will include the following:

•	Single Detached	85 units
•	Townhouses	29 units

• Future Mixed-Use blocks

TownhomesCommercial DevelopmentTBD

A concept plan for the future mixed-use blocks in the Corseed Subdivision is not available at this time. Consequently, for the purpose of this analysis, it is assumed that the traffic generated by the future mixed-use blocks in the Corseed Subdivision will be proportionate to the traffic generated by the future mixed-use blocks in the Moco Subdivision, as calculated in the previous version of this report. This traffic generation estimate was completed using the previous breakdown for the mixed-use blocks presented for the Moco Subdivision, which was based on a concept plan prepared by IPS Consulting Inc., intended for future planning purposes.

Access to the Corseed Subdivision is provided via a connection to County Road 25 [Corseed Access] directly across from Industrial Drive.

The scope of this analysis includes a review of the existing intersections of County Road 25 / Melody Lane, County Road 25 / County Road 109 and proposed intersection of Corseed Access / County Road 25 / Industrial Drive.

Conclusions

- 1. The proposed residential development [Phase 1] in the Corseed Subdivision is expected to generate a total of 85 AM and 111 PM peak hour trips.
- The proposed ultimate development of the Corseed Subdivision, including the future mixeduse development, is expected to generate a total of 148 AM and 246 PM primary peak hour trips.
- Background traffic and pedestrian counts were completed for the existing intersections of County Road 25 / Melody Lane and County Road 25 / County Road 109 on Tuesday August 19th, 2014.
- 4. Level-of-service [LOS] analysis was completed at the study area intersections, using the existing (2016) and background (2021 & 2026) traffic volumes without the proposed development. This enabled a review of existing and future traffic deficiencies that would be present without the influence of the proposed development. Based on the background 2021 traffic volume, a northbound left turn lane is warranted at the intersection of Melody Lane / County Road 25; however, based on our discussions with the Town, widening the road at this intersection is not feasible.
- The following improvements are recommended as a result of the background 2026 traffic volume:

Future Collector & Industrial Drive / Country Road 25

- A northbound left turn lane is recommended at the intersection of Future Collector & Industrial Drive / County Road 25 with 25 metre storage, 40 metre parallel and 115 metre taper length.
- A southbound left turn lane is recommended at the intersection of Future Collector & Industrial Drive / County Road 25 with 15 metre storage, 40 metre parallel and 115 metre taper length.
- 6. No other geometric or traffic signage improvements were recommended at the intersections in the study area as a result of the existing (2016) or background (2021 & 2026) traffic volumes without the proposed development.
- 7. An estimate of the amount of traffic that would be generated by the Subject Site was prepared and assigned to the study area streets and intersections.
- 8. LOS analysis was completed under total (2021, 2026 & 2031) traffic volumes with the proposed development operational at the study area intersections.
- 9. No geometric or traffic signage improvements are recommended at the existing Melody Lane / County Road 25 or County Road 25 / County Road 109 intersections as a result of the total (2021, 2026 & 2031) traffic volumes with the proposed development. As noted above, a northbound left turn lane is warranted at the intersection of Melody Lane / County Road 25; however, based on our discussions with the Town, widening the road at this intersection is not feasible.
- 10. The following improvements are recommended as a result of the Phase 1 Corseed Development:
 - The proposed Corseed Access & Industrial Drive / County Road 25 intersection will
 operate efficiently using unsignalized control with two-way stop control for westbound
 and eastbound traffic at County Road 25. One lane for egress traffic and one lane
 for ingress traffic for the west leg of the intersection will provide the necessary
 capacity for the proposed development.
- 11. The following improvements are recommended as a result of the ultimate Corseed Development (2031). These recommendations should be confirmed once the specifics for the future mixed-use blocks are known:

Corseed Access & Industrial Drive / Country Road 25

Total (2031) Traffic Volume

- Installation of traffic signals to improve the eastbound control delay
- 12. The road structure for the internal streets within the proposed development will meet Town standards for local and collector roadways.
- 13. The sight distance available south of the Corseed Access is greater than the County's minimum sight distance requirements. The sight distance available north of the Corseed Access is marginally below the County's minimum sight distance requirements; however, since it is marginally under the County's minimum sight distance requirements no improvements are recommended.

In summary, the proposed development will not cause any operational issues and will not add significant delay or congestion to the local roadway network.

Table of Contents

1	Introdu	ction	1
1.1	Backgro	ound	1
1.2	Study A	rea	1
1.3	Study S	cope and Objectives	1
1.4	Horizon	Year and Analysis Periods	3
2	Informa	ation Gathering	3
2.1	Street a	nd Intersection Characteristics	3
2.2		Access	
2.3	Local R	oad Improvements	5
2.4	Other D	evelopments within the Study Area	5
	2.4.1	Background Traffic Growth	7
	2.4.2	Traffic Generation for the Moco Subdivision	7
	2.4.3	Traffic Distribution for the Moco Subdivision	8
	2.4.4	Traffic Generation for the Thomasfield Subdivision	9
	2.4.5	Traffic Distribution for the Thomasfield Subdivision	9
	2.4.6	Traffic Generation for the Industrial Drive Development	10
	2.4.7	Traffic Distribution for the Industrial Drive Development	10
2.5	Traffic C	Counts	18
2.6	Horizon	Year Traffic Volumes	20
3	Existing	g Year LOS without Proposed Development	24
3.1	Introduc	stion	24
3.2	Existing	(2016) LOS	25
3.3	Backgro	ound (2021) LOS without Proposed Development	26
3.4	Backgro	ound (2026) LOS without Proposed Development	27
4	Propos	ed Development Traffic Generation and Assignment	28
4.1	Traffic C	Generation	28
4.2	Traffic A	Assignment	29
4.3	Total Ho	orizon Year Traffic Volumes with the Proposed Development	33
5	Interse	ction Operation with Proposed Development	37
5.1	2021 Ho	orizon Year LOS with Full Development	37
5.2	2026 Ho	orizon Year LOS with Full Development	38
5.3	2031 Ho	orizon Year LOS with Full Development	39
5.4	Site Acc	40	

5.5	Pedestrian Movements Review	42
5.6	Sight Distance Review	42
5.7	Road Design	42
6	Summary	43
Lis	t of Tables	
	1 – Estimated Traffic Generation from Proposed Moco Subdivision	
	2 – Estimated Traffic Generation from Adjacent Thomasfield Subdivision	
	3 – Estimated Traffic Generation from the Industrial Drive Development	
	4 – Traffic Distribution Summary	
	5 – Traffic Count Data Collection Information	
	7 – Existing (2016) LOS	
	8 – Background (2021) LOS	
	9 – Background (2026) LOS	
	10 – Estimated Traffic Generation from Proposed Development	
	11 – Traffic Distribution Summary	
	12 – Total (2021) LOS	
	13 – Total (2026) LOS	
	14 – Total (2031) LOS	
Lis	t of Figures	
Figure	e 1 – Proposed Site Location and Study Area	2
	e 2 – Existing Lane Configuration for Study Area Intersections	
	e 3 – Thomasfield Subdivision Location	
	e 4 – Moco Subdivision Phase 1 Build-out (2021) Peak Hour Traffic Volumes	
	e 5 – Moco Subdivision 5-year Post Phase 1 Build-out (2026) Peak Hour Traffic Volumes	
	e 6 – Moco Subdivision Phase 2 Build-out (2031) Peak Hour Traffic Volumes	
	e 7 – Additional Thomasfield Subdivision (2021) Peak Hour Traffic Volumes	
	e 8 – Additional Thomasfield Subdivision (2026 and 2031) Peak Hour Traffic Volumes	
	e 9 – Industrial Drive Development (2026 and 2031) Peak Hour Traffic Volumes	
	e 10 – Existing (2016) Peak Hour Traffic Volumese 11 – Total Background (2021) Peak Hour Traffic Volumes	
	e 12 – Total Background (2021)1 eak Hour Traffic Volumes	
	e 13 – Total Background (2031) Peak Hour Traffic Volumes	
	e 14 – Traffic Assignment for the Proposed Development (2021 & 2026)	
	e 15 – Traffic Assignment for the Proposed Development (2031)	
Figure	e 16 – Total (2021) Peak Hour Traffic Volumes with Proposed Development	34
	e 17 – Total (2026) Peak Hour Traffic Volumes with Proposed Development	
	e 18 – Total (2031) Peak Hour Traffic Volumes with Proposed Development	
Figure	e 19 – Preliminary Intersection Layout	41

List of Appendices

APPENDIX A - Draft Plan of Subdivision

APPENDIX B - Traffic Counts

APPENDIX C - Synchro Analysis Output - Existing Conditions

APPENDIX D - Synchro Analysis Output - Background Traffic Volumes

APPENDIX E – Synchro Analysis Output – Total Traffic Volumes

APPENDIX F - Synchro Analysis Output - Total Traffic Volumes with Improvements

APPENDIX G - MTO GDSOH Left Turn Lane Warrant Graphs

APPENDIX H – OTM Book 12 – Traffic Signal Justification Sheets

APPENDIX I – Grand Valley TMP Excerpts

APPENDIX J – Moco Subdivision Draft Plan

APPENDIX K - 2016 TIS Excerpts

APPENDIX L - Proposed Traffic Distribution Figures

APPENDIX M - Transportation Tomorrow Survey Excerpt

1 Introduction

1.1 Background

Corseed Inc. [The Developer] is proposing to develop a 14.9 hectare site [Corseed Subdivision] located west of Dufferin County Road 25 [County Road 25], south of the Upper Grand Trailway, in the Town of Grand Valley [Town], County of Dufferin [County].

The proposed Corseed Subdivision will include 85 single detached residential units, 29 townhouse units and two future mixed-use blocks (combined area of 1.35 hectares).

Corseed Inc. has retained **JD Northcote Engineering Inc.** [JD Engineering] to prepare this traffic impact study in support of the Draft Plan Application.

1.2 Study Area

Figure 1 shows the location of the subject site and study area intersections in relation to the surrounding area. The Draft Plan of Subdivision (by IPS Consulting Inc.) for the proposed development is shown in **Appendix A**.

The Corseed Subdivision is bound by existing residential lands to the north, County Road 25 to the east, and existing agricultural lands to the west and south. The subject site includes a single access [Corseed Access] connection with County Road 25, across from Industrial Drive.

Through consultation with the Town and County, the following intersections are included in the Study:

- Corseed Access / County Road 25 / Industrial Drive;
- County Road 25 / Melody Lane; and
- County Road 25 / County Road 109.

1.3 Study Scope and Objectives

The purpose of this study is to identify the potential impacts to traffic flow at the site access and on the surrounding roadway network. The study analysis includes the following tasks:

- Consult with the Town and County to address any transportation-related issues or concerns they have with the proposed development;
- Determine existing traffic volumes and circulation patterns;
- Estimate future traffic volumes if the proposed development was not constructed, including the impact of additional proposed developments in the area;
- Complete level-of-service [LOS] analysis of horizon year traffic conditions and identify operational deficiencies;
- Estimate the amount of traffic that would be generated by the proposed development and assign to the roadway network;
- Complete LOS analysis of horizon year traffic conditions and identify additional operational deficiencies;
- Identify improvement options to address operational deficiencies; and
- Document findings and recommendations in a final report.

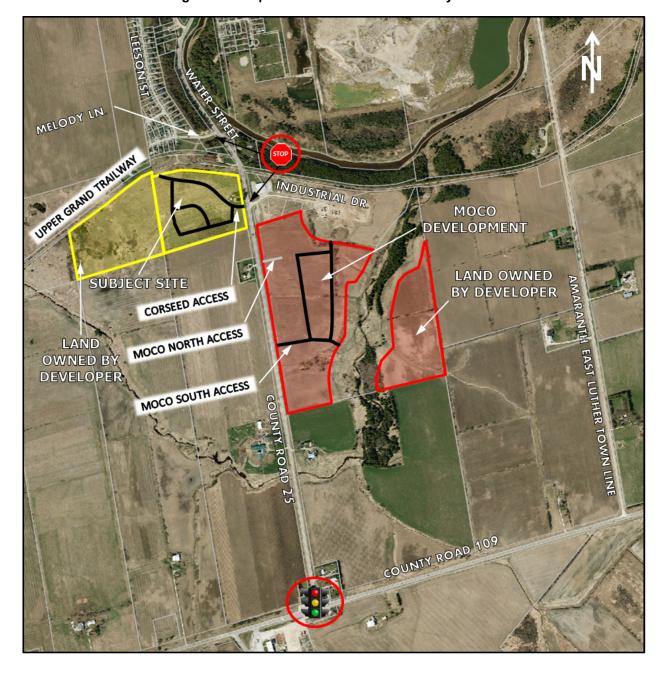


Figure 1 – Proposed Site Location and Study Area

1.4 Horizon Year and Analysis Periods

It has been assumed that, should all approvals be granted, the residential units [Phase 1] within the proposed development will be built-out by 2021. The existing year traffic (2016), Phase 1 build-out year (2021), as well as 5-year post Phase 1 build-out year (2026) scenarios were selected for analysis of traffic operations in the study area. The weekday morning [AM] and afternoon [PM] peak hour have been selected as the analysis periods for this study.

Development plans for the Phase 2 (mixed-use blocks) for the proposed development have not been finalized at this time. It is anticipated that development of the mixed-use blocks will not commence within 10 years of the current proposed development. Based on our correspondence with the Town and County, although the development of the mixed-use blocks are not anticipated to develop in the short term, a longer-term preliminary review of the anticipated mixed-use development for the year 2031 is required.

2 Information Gathering

2.1 Street and Intersection Characteristics

County Road 109 is a two-lane county road with a posted speed limit of 80km/h in the study area. County Road 109 has a rural cross-section with shoulders and ditch on both sides of the road. County Road 109 includes a westbound right turn lane and an eastbound left turn lane at County Road 25. County Road 109 and is under the jurisdiction of the County.

County Road 25 (Water Street): County Road 25 is a two-lane road with a rural cross-section and no sidewalk. From the north limit of the study area to approximately 80 metres north of Industrial Drive, County Road 25 has a posted speed limit of 40km/h. The posted speed limit on County Road 25 is 60 km/h from 80 metres north of Industrial Drive to approximately 190 metres south of Industrial Drive. The posted speed limit on County Road 25 is 80 km/h from 190 metres south of Industrial Drive to County Road 109. County Road is under the jurisdiction of the County. North of the Upper Grand Trailway, County Road 25 becomes Water Street, which is a two-lane primary road. Water Street has a rural cross-section with a sidewalk on the west side of the street, starting just south of Melody Lane. Water Street is under jurisdiction of the Town.

Melody Lane is a two-lane primary road with unsigned (assumed) speed limit of 40km/h in the study area. Melody Lane has an urban cross-section with a sidewalk on the north side of the street. Melody Lane is under jurisdiction of the Town.

Leeson Street is a two-lane primary road with unsigned (assumed) speed limit of 40km/h in the study area. Leeson Street has an urban cross-section with a sidewalk on the west side of the street. Leeson Street is under jurisdiction of the Town.

Industrial Drive is a two-lane road primary road with a rural cross-section with an unsigned (assumed) speed limit of 40km/h in the study area. Industrial Drive is under the jurisdiction of the Town.

The existing lane configuration for all study area intersections can be seen in Figure 2.

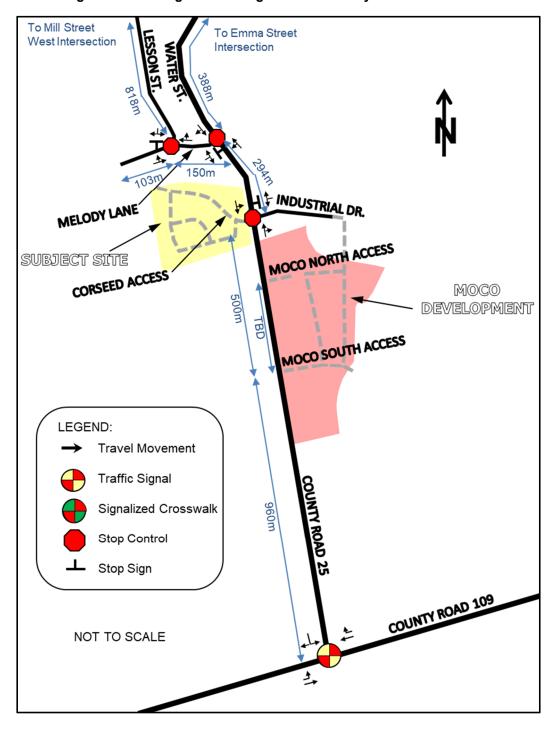


Figure 2 – Existing Lane Configuration for Study Area Intersections

2.2 Transit Access

There is currently no public transit available, or planned for in the study area.

2.3 Local Road Improvements

Based on the Town's Transportation Master Plan (dated March 2017) [Town TMP], the recommended alternative includes a future collector road [Future Collector] southwest of the Corseed Subdivision with a connection to County Road 25, south of the Corseed Access (excerpt provided in **Appendix I**). However, based on our correspondence with the Town, in conjunction with the proposed Corseed Subdivision, the location of the Future Collector has been revised to extend through the northwest side of the Corseed Subdivision, via Street A and will connect to County Road 25 at Industrial Drive. The Future Collector will bypass the Town and reconnect to County Road 25 north of Fife Road and continue around the existing built boundary of the Village east of County Road 25 and connect with Scott Street at Bielby Street. For the purpose of our analysis, we have assumed that the Future Collector will be constructed by the 2026 horizon year scenario.

The above noted improvement will have a notable impact on the distribution of the local traffic volumes, when it is completed in 2026. For the purpose of this report, it is assumed that the majority of the existing traffic that would pass through the Village and continue northbound or southbound on County Road 25 will be redistributed to the Future Collector. Based on our review of the local traffic volumes, it is assumed that 30% of the existing traffic currently travelling along Water Street through the Village will use the Future Collector.

The recommended alternative in the Town TMP also includes upgrading Amaranth Townline to a collector road with a collector road connection to County Road 25, through the Moco Subdivision mentioned in Section 2.4. Upgrading Amaranth Townline is anticipated to redirect some existing and future background traffic on County Road 25; however, in order to be conservative, we have not specifically accounted for this redistribution in our analysis.

No other geometric or road capacity improvements are currently planned within the study area.

2.4 Other Developments within the Study Area

The Moco Subdivision and the Thomasfield Subdivision are the only planned developments that will have a significant impact on local traffic volumes in the study area.

The Developer is moving ahead with plans to develop a 34.4 hectare site [Moco Subdivision] located southeast of the proposed development, bound by County Road 25 to the west, existing employment land to the north, and existing agricultural lands to the south and east. The proposed Moco Subdivision will include 54 single-family detached residential units, future mixed-use blocks (combined area of 9.17 hectares) and 6.9 hectares of future development lands. It is anticipated the Phase 1 of the Moco Subdivision will be built-out by 2021. The build-out date for Phase 2 of this development is not anticipated within 10 years of the proposed development; however, as noted in Section 1.4, a longer-term preliminary review of the anticipated mixed-use development for the 2031 horizon is included in the scope of this study. The previous submission of this report, prepared by JD Engineering (dated December 2016) [2016 TIS], included the analysis with an estimate of the traffic generation by the conceptual development plan for the future mixed-use block in the Moco Subdivision.

The Moco Subdivision includes a proposed t-intersection with County Road 25 on the south half of the property [Moco South Access]. A second right-in right-out access onto County Road 25 [Moco North Access] with an internal connection via Street A is anticipated to service the mixed-use block at

the northwest corner of the property. Although the exact location of the Moco North Access is not known at this time, we have provided a conceptual access as part of our review to allow for a preliminary review of the mixed-use block. An internal connection to Industrial Drive is anticipated to be constructed as well. The Moco South Access and the internal connection to Industrial Drive is expected to be constructed along with Phase 1 and the Moco North Access is expected to be constructed along with Phase 2 for the Moco Subdivision.

Thomasfield Homes Ltd. Is moving ahead with the proposed Thomasfield Subdivision. The location of this development is illustrated in **Figure 3**¹. Phase 1 of this development is currently under construction. Phase 1 includes a connection with Amaranth Street West at the north end and Melody Lane at the south end. The developer of the Thomasfield Subdivision also owns lands located west of the Phase 1 lands; however, there are currently no plans for the development of these lands. Paradigm Transportation Solutions Ltd. prepared a traffic impact study (dated April 2011) for the Thomasfield Subdivision [Thomasfield TIS].

Industrial lands along Industrial Drive [Industrial Drive Development] are anticipated to be developed within the proposed developments horizon years. The development density on Industrial Drive has been estimated based on the 2021 and 2031 employment projections provided in the Draft Transportation Master Plan for Grand Valley (excerpts included in **Appendix I**). Based on a comparison between the employment population projections and the developable areas east of County Road 25 and south of the Grand River, we have estimated that the employment population for the Industrial Drive Development will be 185 employees by 2031.

There are a number of other developments in the village of Grand Valley at various stages of the planning process. The majority of these developments are located north of the existing built boundary of the village.

Section 2.4.2 to 2.4.7 outline the methodology applied to account for the additional traffic in the study area, as a result of the Moco Subdivision, Thomasfield Subdivision and the Industrial Drive Development.

¹ Excerpt from the Thomasfield TIS (Fig. 1.1).

6

Figure 3 - Thomasfield Subdivision Location

2.4.1 **Background Traffic Growth**

Through our discussions with the Town and County, a background traffic growth rate of 2.2% has been applied to the traffic volumes on County Road 25 and 109. This background traffic growth will account for increased traffic volumes as a result of small infill developments close to the study area, or larger developments beyond the study area

2.4.2 Traffic Generation for the Moco Subdivision

An updated conceptual site plan (dated October 2017) for the Moco Subdivision was prepared by IPS Consulting Inc. (attached in **Appendix J**).

The traffic generation for Phase 1 of the Moco Subdivision has been based on the Institute of Transportation Engineers [ITE] *Trip Generation* data. The following ITE land uses have been applied to estimate the traffic from the proposed development:

- ITE land use 210 (Single-Family Detached Housing); and
- ITE land use 230 (Residential Condominium / Townhouse).

As noted in Section 1.4, it is anticipated that development of the mixed-use blocks will not commence within the next 10 years. Based on our correspondence with the Town and County, although the development of the mixed-use blocks are not anticipated to develop in the short term, a longer-term preliminary review of the anticipated mixed-use development for the year 2031 is required.

The traffic generated by the future mixed-use block in the Moco Subdivision has been calculated based on the traffic projections completed in the 2016 TIS for the future mixed-use block in the Moco Subdivision. The traffic generated by the Moco Subdivision in the 2016 TIS was based off the conceptual development plan (dated November 2016) by IPS Consulting Inc. Excerpts from this study have been included in **Appendix K**.

The estimated trip generation of the Moco Subdivision is illustrated below in **Table 1**. The AM and PM peak traffic generation for the subject site generally aligns with the AM and PM peak hour in the traffic counts.

Table 1 – Estimated Traffic Generation from Proposed Moco Subdivision

Phase	Land Use	Size	Al	M Peak Ho	our	PI	M Peak Ho	ur
riiase	Land Use	Size	IN	OUT	TOTAL	IN	OUT	TOTAL
	Single-Family Detached Housing ITE Land Use: 210	54 units	12	36	48	38	22	60
1	Residential Condominium/Townhouse ITE Land Use: 230	7 units	1	5	6	5	22 2 24 23 402 -40 -119	7
	PHASE 1 TOTAL TRIPS			41	54	43	24	67
	Residential Condominium/Townhouse ITE Land Use: 230	141% of Moco Traffic Volumes	10	50	60	47	23	70
2	Shopping Center ITE Land Use: 820	in 2016 TIS*	126	77	203	371	402	773
	Internal Capture (10%) ²		-13	-7	-20	-37	-40	-77
	Pass-by Trips (Shopping (Center)	0	0	0	-119	-119	-238
	PHASE 2 TOTAL PRIMARY TRI	PS	126	111	237	258	267	525

^{*}Excerpts for the traffic generation of the residential townhouse and mixed-use land in the Moco Subdivision are outlined in **Table 9** of the 2016 TIS (excerpts provided in **Appendix L**).

In order to be conservative, no transportation modal split has been applied to the above-noted traffic generation calculation.

2.4.3 Traffic Distribution for the Moco Subdivision

The distribution of traffic for the Moco Subdivision has been taken directly from the 2016 TIS (excerpts provided in **Appendix K**). The internal distribution of traffic in the Moco Subdivision has been adjusted to reflect the updated conceptual site plan and the relocation of the Future Collector on the west side of County Road 25, as noted in Section 2.3. It is assumed that 30% of vehicles travelling north on County Road 25 will use the Future Collector connection once constructed.

² The internal capture rate (10%) was estimated based on a conservative application of the values provided in Table 7.1 and 7.2 of the ITE *Trip Generation Handbook*.

Figures A and **B** in **Appendix M** illustrate the traffic distribution pattern for the residential component of the Moco in the 2021 horizon year and the 2026/2031 horizon years respectively.

Figures C in **Appendix M** illustrates the traffic distribution pattern for the commercial component of the Moco Subdivision.

Figure 4, 5 and **6** illustrates the traffic assignment by the Moco Subdivision for the Phase 1 build-out (2021), 5-year post Phase 1 build-out (2026) and Phase 2 build-out (2031) scenarios respectively, in the AM and PM peak hour.

2.4.4 Traffic Generation for the Thomasfield Subdivision

The traffic generation for the Thomasfield Subdivision has been included in addition to the background traffic growth outlined above. **Table 2**³ summarizes the estimated trip generation for each phase of the development. Phase 1 was approximately 75% built-out in 2014 at the time the traffic counts were completed for this report. In order to avoid double counting this traffic, we have reduced the overall traffic generation by 37.5%⁴. It is anticipated that the remaining units will be built-out prior to the 2021 horizon year.

Development	Land Use	0:	Α	M Peak Ho	our	PM Peak Hour		
Phase	Land Use	Size	IN	OUT	TOTAL	IN	OUT	TOTAL
	Single-Family Detached	98 units	18	55	73	62	37	99
Phase 1	Low-Rise Condominium / Townhouse	52 units	9	26	35	24	17	41
	PHASE 1 TOTAL	27	81	108	86	54	140	
	Single-Family Detached	142 units	27	80	107	90	53	143
Phase 2	Low-Rise Condominium / Townhouse	29 units	5	15	20	13	10	23
	PHASE 2 TOTAL	TRIPS	32	95	127	103	63	166

Table 2 – Estimated Traffic Generation from Adjacent Thomasfield Subdivision

2.4.5 Traffic Distribution for the Thomasfield Subdivision

The distribution of traffic for the Thomasfield Subdivisions has been taken directly from the Thomasfield TIS.

The construction of the Future Collector is anticipated to impact the distribution of traffic generated by the Thomasfield Subdivision. Based on our review of future road network, in conjunction with our estimate of the origin / destination of the trips from the Thomasfield Subdivision, we have estimated that 40% of the traffic south of the Thomasfield Subdivision will use the Future Collector in the 2026 and 2031 scenarios. This assumption is fundamentally based on our estimates of the travel time through the future road network and the assumption that people will select the route with the shortest travel time.

Figures 7 and **8** illustrate the additional 2021 and 2026/2031 traffic volumes in the study area generated by the Thomasfield Subdivision respectively, during the AM and PM peak hour.

⁴ Since the traffic generated by Phase 1 and 2 is relatively equal, we have taken 75% of Phase 1 to be equal to 37.5% of the total traffic generation.

³ Excerpt from the Thomasfield TIS (Table 4.3)

2.4.6 Traffic Generation for the Industrial Drive Development

The lands along Industrial Drive were partially built-out on the date the traffic counts used in this report were completed (October 2014). Development included the Grand Valley and District Fire Department, the Water Pollution Control Plant and a mini-storage facility (16 units⁵). The traffic generation for the three above-noted existing land-uses is relatively low during the AM and PM peak hour analyzed in this report. Consequently we have ignored the traffic on this approach for the existing (2016) and future 2021 scenarios. For the future 2026 and 2031 scenarios we have estimated the traffic generation for the Industrial Drive Development based on the Institute of Transportation Engineers [ITE] *Trip Generation* data. The Industrial Park (ITE #130) land use has been applied to represent the development in the area.

The estimated trip generation from the future development on Industrial Drive is illustrated below in **Table 3**. The AM and PM peak traffic generation for industrial properties generally aligns with the AM and PM peak hour in the traffic counts.

AM Peak Hour PM Peak Hour Location Land Use Size IN OUT TOTAL ΙN OUT **TOTAL** Industrial Park Industrial Drive 185 Employees 70 10 80 17 66 83 ITE Land Use: 130

Table 3 – Estimated Traffic Generation from the Industrial Drive Development

In order to be conservative, no transportation modal split has been applied to the above-noted traffic generation calculation.

2.4.7 Traffic Distribution for the Industrial Drive Development

For the purposes of this study, it has been assumed that all traffic generated by Industrial Drive Development will be new traffic and would not be in the study area if the development was not constructed.

The ITE data provides the anticipated percentage of new traffic entering and exiting during the peak hour. Beyond the local area the distribution of traffic from the developments on Industrial Drive have been estimated based on the 2011 Transportation Tomorrow Survey [TTS] data for the area (excerpt attached as **Appendix M**). TTS data provides historical data for work trip origins with a destination in the Grand Valley zone (2006 GTA Zone – 8416).

The above-noted methodology provides an estimate of the distribution of ingress trips. We have assumed that the distribution of egress trips will follow the inverse of the ingress traffic distribution. For each of the individual areas identified in the TTS data, we have selected the probable route of travel, assuming that people will select their route primarily based on travel time.

The construction of the Future Collector is anticipated to impact the distribution of traffic generated by the Industrial Drive Development. It is assumed that 30% of vehicles travelling north on County Road 25 will use the Future Collector connection once constructed.

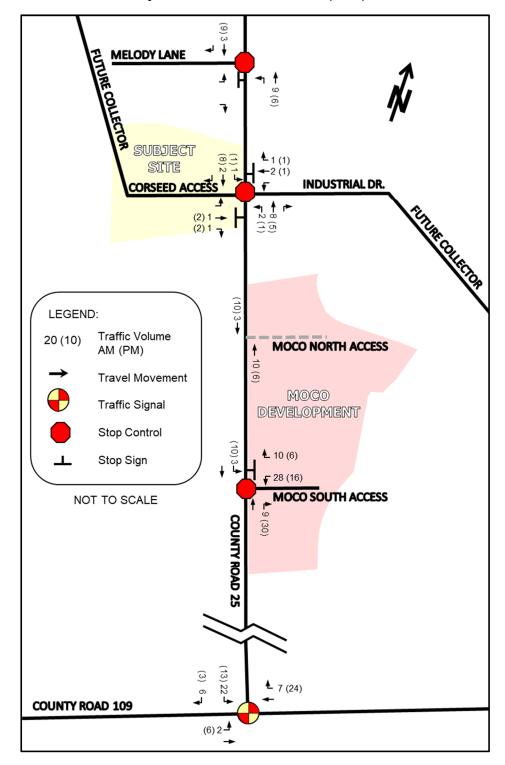
Table 4 summarizes the trip distribution for the Industrial Drive Development.

⁵ A second mini-storage building with 24 storage units was constructed in 2016.

Table 4 – Traffic Distribution Summary

Travel Direction (to/from)	Percent of Total Traffic Generation
North (via County Road 25)	49%
North (via Future Collector)	21%
Southwest	6%
Southeast	24%
Total	100%

Figure 9 illustrates the additional (2026 and 2031) traffic volumes in the study area generated by the Industrial Drive Development during the AM and PM peak hour.



MELODY LANE SUBJECT **≜** 2 (1) SITE CORSEED ACCESS INDUSTRIAL DR. 60 LEGEND: Traffic Volume 20 (10) AM (PM) **MOCO NORTH ACCESS Travel Movement** Traffic Signal MOCO Stop Control DEVELOPMENT Stop Sign (11) 3 • (0) 0 • **▲** 11 (6) NOT TO SCALE **2**9 (16) **MOCO SOUTH ACCESS** 10 (30) **COUNTY ROAD 25** (13)22**≜** 8 (24) **COUNTY ROAD 109** (6) 3 ♣

Figure 4 - Moco Subdivision Phase 1 Build-out (2021) Peak Hour Traffic Volumes

Figure 5 – Moco Subdivision 5-year Post Phase 1 Build-out (2026) Peak Hour Traffic Volumes

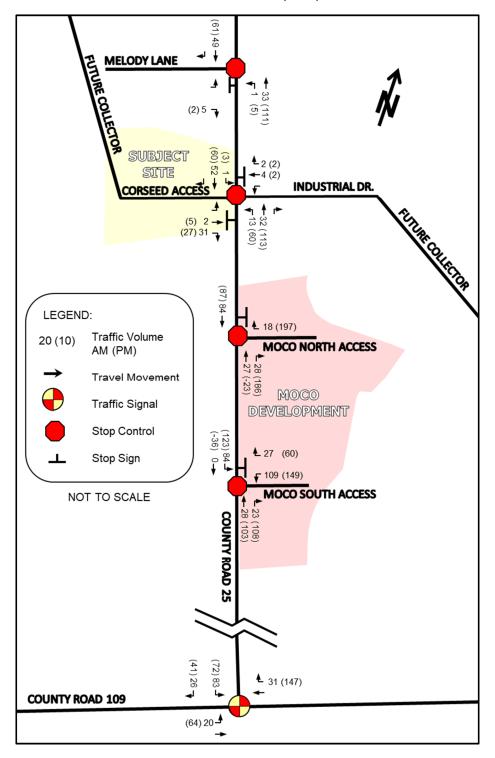


Figure 6 - Moco Subdivision Phase 2 Build-out (2031) Peak Hour Traffic Volumes

MELODY LANE (0) 1 **A** (24) (38) (26) 54 🔻 SUBJECT SITE CORSEED ACCESS **INDUSTRIAL DR.** 3 (62) LEGEND: (41)57Traffic Volume 20 (10) AM (PM) **MOCO NORTH ACCESS Travel Movement** Traffic Signal MOCO Stop Control DEVELOPMENT Stop Sign (41) 57 → NOT TO SCALE **MOCO SOUTH ACCESS COUNTY ROAD 25** (8) 12 귝 **L** 12 (49) **COUNTY ROAD 109** £ (13) **▲**

Figure 7 – Additional Thomasfield Subdivision (2021) Peak Hour Traffic Volumes

MELODY LANE 23 (16) 32 🖜 INDUSTRIAL DR. CORSEED ACCESS 12 (47) 4 (15) (10)22(41) 57→ LEGEND: Traffic Volume 20 (10) **MOCO NORTH ACCESS** AM (PM) 6 **Travel Movement** (62) MOCO Traffic Signal DEVELOPMENT Stop Control (41) 57 → Stop Sign **MOCO SOUTH ACCESS** NOT TO SCALE **COUNTY ROAD 25** (33)45

(13) 3 **4**

12 (49)

Figure 8 - Additional Thomasfield Subdivision (2026 and 2031) Peak Hour Traffic Volumes

COUNTY ROAD 109

MELODY LANE ↑5 (32) SUBJECT (8) 34 **L**_{5 (32)} **←**2 (14) SITE √3 (20) INDUSTRIAL DR. CORSEED ACCESS (4) 15 -(5) (20)3→ LEGEND: Traffic Volume 20 (10) **MOCO NORTH ACCESS** AM (PM) **Travel Movement** MOCO Traffic Signal DEVELOPMENT Stop Control (20) 3 → Stop Sign **MOCO SOUTH ACCESS** NOT TO SCALE **COUNTY ROAD 25** (16) 2 4 **▲** 17 (4) **COUNTY ROAD 109** (1) 4**♣**

Figure 9 - Industrial Drive Development (2026 and 2031) Peak Hour Traffic Volumes

2.5 Traffic Counts

Detailed turning movement traffic and pedestrian counts were completed at the two existing intersections within the study area. **Table 5** summarizes the traffic count data collection information.

Table 5 - Traffic Count Data Collection Information

Intersection	Count Date	AM Peak Hour	PM Peak Hour	Source
County Road 25 / Melody Lane	Thursday October 9 th , 2014	07:45 – 08:45	17:15 – 18:15	JD Eng.
County Road 25 / County Road 109	Wednesday October 9 th , 2014	07:30 - 08:30	16:45 – 17:45	JD Eng.

Detailed traffic count data can be found in **Appendix B**. These peaks hours generally aligned with the anticipated peak hour of traffic generation by the proposed development. Although the AM and PM peak periods at the two intersections did not exactly align, for the purpose of this report, we have assumed that the AM and PM peak hours are concurrent.

Heavy vehicle percentages and pedestrian crossings from the traffic count data have also been included in the Synchro analysis.

The traffic counts have been factored by the annual background traffic growth rate (2.2% - as calculated in Section 2.4.1) to estimate the existing (2016) traffic volumes.

Figure 10 illustrates the existing (2016) AM and PM peak hour traffic volumes at the site access and study area intersections.

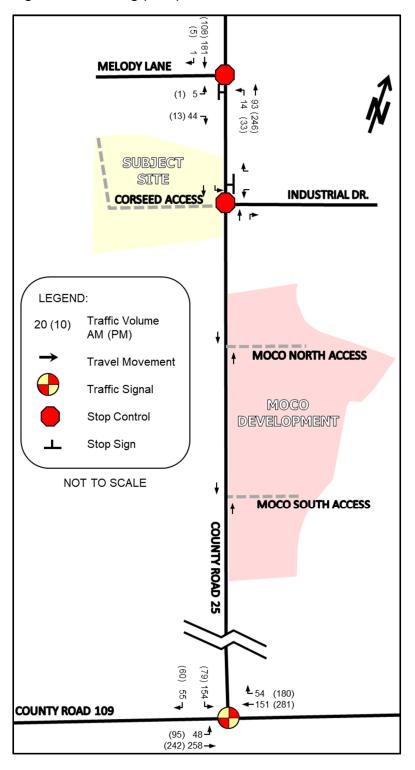


Figure 10 - Existing (2016) Peak Hour Traffic Volumes

2.6 Horizon Year Traffic Volumes

Future horizon year traffic volumes without the proposed development were estimated to provide base case scenarios to compare to horizon year traffic scenarios with the proposed development operational.

The background traffic growth rate and the adjacent development traffic volumes calculated in Section 2.4 have been applied to the existing traffic counts to estimate the total background traffic volume within the study area.

Figure 11, 12 and **13** illustrate the 2021, 2026 and 2031 total background AM and PM peak hour traffic volumes in the study area, respectively.

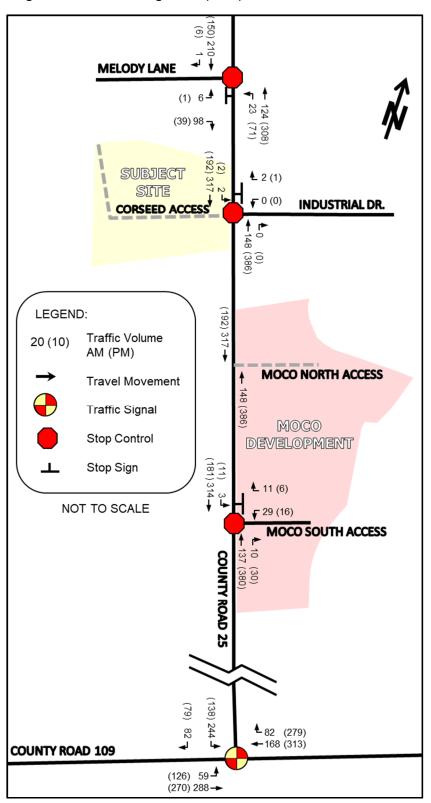


Figure 11 - Total Background (2021) Peak Hour Traffic Volumes

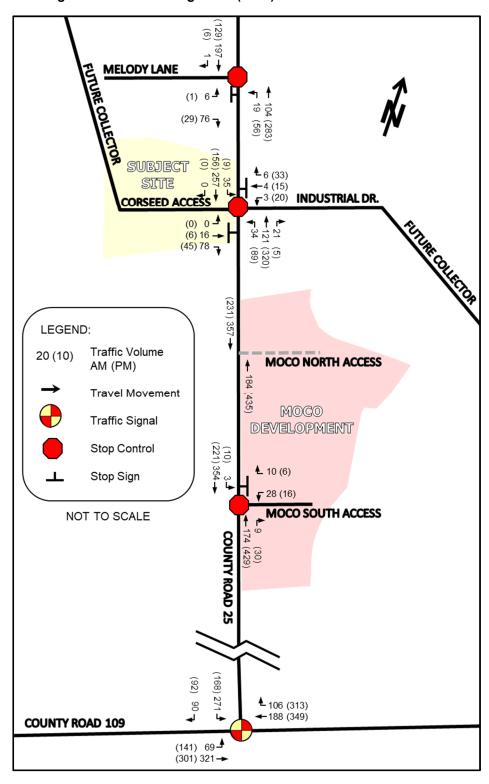


Figure 12 - Total Background (2026) Peak Hour Traffic Volumes

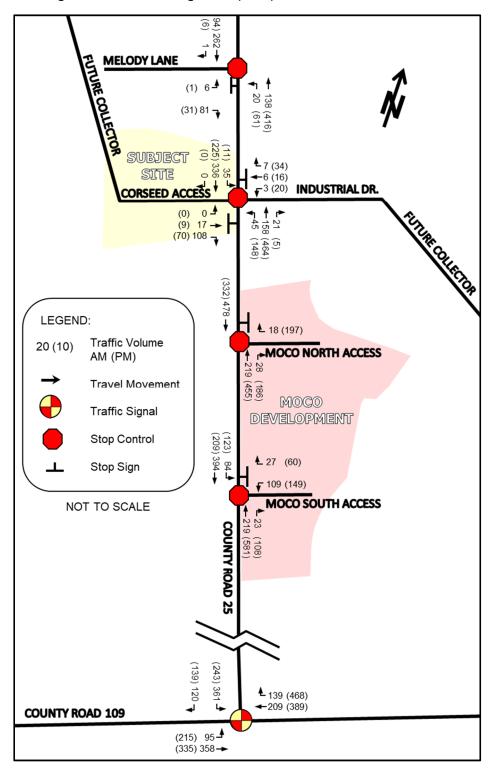


Figure 13 - Total Background (2031) Peak Hour Traffic Volumes

3 Existing Year LOS without Proposed Development

3.1 Introduction

Existing year operational conditions were established to determine how the street network within the study area is currently functioning without the proposed development. This provides a base case scenario to compare with future development scenarios. Traffic operations within the study area were evaluated using the 2015 traffic volumes with the existing road configuration and traffic control. The intersection performance was measured using the traffic analysis software, Synchro 9, a deterministic model that employs Highway Capacity Manual and Intersection Capacity Utilization methodologies for analyzing intersection operations. These procedures are accepted by provincial and municipal agencies throughout North America.

Synchro 9 enables the study area to be graphically defined in terms of streets and intersections, along with their geometric and traffic control characteristics. The user is able to evaluate both signalized and unsignalized intersections in relation to each other, thus not only providing level of service for the individual intersections, but also enabling an assessment of the impact the various intersections in a network have on each other in terms of spacing, traffic congestion, delay, and queuing.

Individual turning movements with a volume-to-capacity [V/C] ratio of 0.85 or greater are considered to be critical movements. Turning movements with a V/C ratio approaching this threshold and have been highlighted in the LOS tables.

The intersection operations were also evaluated in terms of the LOS. LOS is a common measure of the quality of performance at an intersection and is defined in terms of vehicular delay. This delay includes deceleration delay, queue move-up time, stopped delay, and acceleration delay. LOS is expressed on a scale of A through F, where LOS A represents very little delay (i.e. less than 10 seconds per vehicle) and LOS F represents very high delay (i.e. greater than 50 seconds per vehicle for a signalized intersection).

The LOS criteria for signalized and stop sign controlled intersections are shown in **Table 6**. A description of traffic performance characteristics is included for each LOS.

Table 6 - Level of Service Criteria for Intersections

		Control Delay (seconds per vehicle)				
LOS	LOS Description	Signalized Intersections	Stop Controlled Intersections			
Α	Very low delay; most vehicles do not stop (Excellent)	less than 10.0	less than 10.0			
В	Higher delay; more vehicles stop (Very Good)	between 10.0 and 20.0	between 10.0 and 15.0			
С	Higher level of congestion; number of vehicles stopping is significant, although many still pass through intersection without stopping (Good)	between 20.0 and 35.0	between 15.0 and 25.0			
D	Congestion becomes noticeable; vehicles must sometimes wait through more than one red light; many vehicles stop (Satisfactory)	between 35.0 and 55.0	between 25.0 and 35.0			
Е	Vehicles must often wait through more than one red light; considered by many agencies to be the limit of acceptable delay	between 55.0 and 80.0	between 35.0 and 50.0			
F	This level is considered to be unacceptable to most drivers; occurs when arrival flow rates exceed the capacity of the intersection (Unacceptable)	greater than 80.0	greater than 50.0			

3.2 **Existing (2016) LOS**

The results of the LOS analysis under existing (2016) traffic volumes during the AM and PM peak hour can be found below in **Table 7**. Existing intersection geometry and traffic control have been utilized for this scenario. Detailed output of the Synchro analysis can be found in **Appendix C**.

Table 7 - Existing (2016) LOS

Location		Weeko	lay AM I	Peak Hour		Weekday PM Peak Hour				
(E-W Street / N-S	V/C	Delay	LOS	95% Qu	95% Queue (m)		Delay	LOS	95% Qu	ieue (m)
Street)	5	(s)	LOS	Model	Actual	V/C	(s)		Model	Actual
Melody Lane / County Road 25 (unsignalized)	1	1.8	А	1	1	-	1.0	А	1	-
EB	0.07	10.0	Α	-	-	0.02	9.1	Α	-	-
County Road 109 / County Road 25 (signalized)	0.36	15.2	В	-	-	0.31	13.4	В	-	-
EBL	0.10	10.6	В	10	75	0.21	11.6	В	18	75
EBT	0.33	12.4	В	-	-	0.32	12.3	В	-	-
WBT	0.21	11.4	В	-	-	0.36	12.7	В	-	-
WBR	0.04	10.2	В	6	95	0.12	10.7	В	10	95
SB	0.40	23.8	С	-	-	0.23	21.4	С	-	-

The results of the LOS analysis indicate that the study area intersections are operating within the typical design standards noted in Section 3.1.

The anticipated queue length does not exceed the existing storage length and will not queue back to adjacent intersections. Consequently, there are no issues with the queuing in the study area.

An analysis was completed for the northbound left turn movement on County Road 25 at Melody Lane. Based on the criteria outlined in Appendix 9A of the MTO Design Supplement for TAC

Geometric Design Guide for Canadian Roads [MTO DS] left turn lanes are not warranted⁶. MTO GDSOH left turn warrant graphs are provided in **Appendix G**.

A review of the need for additional auxiliary right turn lanes at all unsignalized intersections was completed as part of our analysis. The results of the Synchro analysis indicate that there is excess capacity for all movements; consequently, additional auxiliary right turn lanes are not recommended.

Based on the Ontario Traffic Manual Book 12 *Signal Justification*, traffic signals are not warranted at the intersection of Melody Lane / County Road 25 (results are provided in **Appendix H**).

No improvements are required at the within the study area.

3.3 Background (2021) LOS without Proposed Development

The results of the LOS analysis for the background (2021) traffic volumes during the AM and PM peak hour can be found below in **Table 8**. Existing intersection geometry and traffic control have been utilized for this scenario. Detailed output of the Synchro analysis can be found in **Appendix D**.

Weekday PM Peak Hour Weekday AM Peak Hour Location (E-W Street / N-S 95% Queue (m) LOS 95% Queue (m) Delav V/C LOS V/C Delay (s) Street) Model Actual Model Actual (s) Melody Lane / County Road 25 2.8 Α 19 Α (unsignalized) ΕB 0.05 0.16 10.6 В 9.4 Α --Industrial Drive / 0.1 Α 0.0 Α County Road 25 (unsignalized) WB 0.00 Α 0.00 10.7 В 91 County Road 109 / County Road 25 0.47 18.1 В 0.40 14.5 В (signalized) 10.8 0.30 **EBL** 0.12 В 11 75 12.5 В 23 75 0.37 **EBT** 12.8 В 0.35 12.6 В WBT 0.24 11.6 В 0.40 13.1 В 7 12 95 WBR 0.06 10.3 В 95 0.19 11.2 В SB 0.63 29.3 С 0.41 24.0 С

Table 8 - Background (2021) LOS

The results of the LOS analysis indicate that the study area intersections are operating within the typical design standards noted in Section 3.1.

The anticipated queue length does not exceed the existing storage length and will not queue back to adjacent intersections. Consequently, there are no issues with the anticipated queuing in the study area.

An analysis was completed for the left turn movements at all unsignalized intersections within the study area based on the criteria outlined in Appendix 9A of the MTO DS⁷, a northbound left turn lane is warranted at the Melody Lane / County Road with a 15 metre storage length; however, based on our discussions with the Town, widening the road at this intersection is not feasible. Consequently,

⁶ North of Industrial Drive, a design speed of 50km/h is assumed for County Road 25. South of Industrial Drive, a design speed of 70km/h is assumed for County Road 25.

we have proceeded with our analysis without the warranted northbound left turn lane. No additional left turn lanes are warranted. MTO GDSOH left turn warrant graphs are provided in **Appendix G**.

A review of the need for additional auxiliary right turn lanes at all unsignalized intersections was completed as part of our analysis. The results of the Synchro analysis indicate that there is excess capacity for all movements; consequently, additional auxiliary right turn lanes are not recommended.

Based on the Ontario Traffic Manual Book 12 *Signal Justification*, traffic signals are not warranted at the intersection of Melody Lane / County Road 25 (results are provided in **Appendix H**).

No improvements are required at the within the study area.

3.4 Background (2026) LOS without Proposed Development

The results of the LOS analysis for the background (2026) traffic volumes during the AM and PM peak hour can be found below in **Table 9**. Existing intersection geometry and traffic control have been utilized for this scenario. Detailed output of the Synchro analysis can be found in **Appendix D**.

Weekday AM Peak Hour Weekday PM Peak Hour Location 95% Queue (m) LOS 95% Queue (m) (E-W Street / N-S Delay Delay (s) LOS V/C V/C Street) Actual Model Actual (s) Model Melody Lane / County Road 25 2.5 Α 1.6 Α (unsignalized) ΕB 0.12 10.3 В 0.03 9.2 Α Future Collector & Industrial Drive / 3.2 Α 3.7 Α County Road 25 (unsignalized) ΕB 0.15 11.4 В 0.08 10.4 В -0.03 12.2 0.18 15.8 WB В С County Road 109 / County Road 25 0.52 19.0 В 0.47 15.3 В (signalized) 0.14 11.0 В 75 0.36 13.2 В 27 75 EBL 13 EBT 0.41 13.2 В 0.39 13.0 В WBT 0.27 11.9 В 0.45 13.6 В WBR 0.08 10.4 В 8 95 0.22 11.4 В 12 95 0.71 32.0 С 0.50 25.9

Table 9 - Background (2026) LOS

The results of the LOS analysis indicate that the study area intersections are operating within the typical design standards noted in Section 3.1.

The anticipated queue length does not exceed the existing storage length and will not queue back to adjacent intersections. Consequently, there are no issues with the anticipated queuing in the study area.

An analysis was completed for left turn movements at all unsignalized intersections within the study area based on the criteria outlined in Appendix 9A of the MTO DS.

Based on the above noted warrants, a northbound left turn lane is recommended on County Road 25 at the Future Collector with a 25 metre storage length⁸, 40 metre parallel length and a 115 metre taper length.

Based on the above noted warrants a southbound left turn lane is not warranted on County Road 25 at Industrial Drive; however, a southbound left turn lane is recommended to avoid piecemeal reconstruction of County Road 25 in the study area. The traffic volumes in this scenario are approaching the warrant for a southbound left turn lane and are anticipated to pass the warrant likely a short time after the construction of the mixed-use blocks in the 2031 horizon year. Consequently, a southbound left turn lane is recommended on County Road 25 at Industrial Drive with a 15 metre storage length, 40 metre parallel length and a 115 metre taper length.

No other left turn lanes are warranted in the study area. MTO DS left turn warrant graphs are provided in **Appendix G**.

A review of the need for additional auxiliary right turn lanes at all unsignalized intersections was completed as part of our analysis. The results of the Synchro analysis indicate that there is excess capacity for all movements; consequently, additional auxiliary right turn lanes are not recommended.

Based on the Ontario Traffic Manual Book 12 *Signal Justification*, traffic signals are not warranted at the intersection of Melody Lane / County Road 25 or Future Collector / County Road 25 (results are provided in **Appendix H**).

No improvements are required at the within the study area.

4 Proposed Development Traffic Generation and Assignment

4.1 Traffic Generation

The proposed site plan for the Corseed Subdivision is shown in **Appendix A**.

The traffic generation for Phase 1 of the proposed development has been based on the ITE *Trip Generation* data. The following ITE land uses have been applied to estimate the traffic from the proposed development:

- ITE land use 210 (Single-Family Detached Housing)
- ITE land use 220 (Multifamily Housing (Low-Rise))

As noted in Section 1.4, development plans for the future mixed-use blocks (Phase 2) in the proposed development have not been finalized at this time. It is anticipated that development of the mixed-use blocks will not commence within 10 years of the current proposed development. Based on our correspondence with the Town and County, although the development of the mixed-use blocks are not anticipated to develop in the short term, a longer-term preliminary review of the anticipated mixed-use development for the year 2031 is required.

The traffic generated by the future mixed-use block in the Corseed Subdivision has been calculated based on the traffic projections completed in the 2016 TIS for the future mixed-use block in the Moco Subdivision. The traffic generated by the Moco Subdivision in the 2016 TIS was based off the

⁸ Storage length requirement based on the anticipated queue in the Total (2031) scenario.

conceptual development plan (dated November 2016) by IPS Consulting Inc. Excerpts from this study have been included in **Appendix K**.

The estimated trip generation of the proposed development is illustrated below in **Table 10**. The AM and PM peak traffic generation for the subject site generally aligns with the AM and PM peak hour in the traffic counts.

Table 10 – Estimated Traffic Generation from Proposed Development

Phase	Land Use	Size	AM Peak Hour		PI	M Peak Ho	our	
Phase	Land Ose	Size	IN	OUT	TOTAL	IN	OUT	TOTAL
1	Single-Family Detached Housing ITE Land Use: 210	85 units	18	52	70	57	34	91
'	Multifamily Housing (Low-Rise) ITE Land Use: 220	29 units	3	12	15	13	7	20
	PHASE 1 TOTAL TRIPS			64	85	70	41	111
	Residential Condominium/Townhouse		3	12	15	12	6	18
2	Shopping Centre	25% of	31	20	51	93	100	193
2	Internal Capture	Moco*	-3	-2	-5	-10	-10	-20
	Pass-by		0	0	0	-30	-30	-60
	PHASE 2 TOTAL PRIMARY TRIPS	52	94	146	135	107	242	

^{*}Traffic generated by the residential townhouse and commercial area for the proposed Moco Subdivision is provided in Table 1.

In order to be conservative, no transportation modal split has been applied to the above-noted traffic generation calculation.

4.2 Traffic Assignment

For the purposes of this study, it has been assumed that all traffic generated by the proposed development will be new traffic and would not be in the study area if the development was not constructed. The ITE data provides the anticipated percentage of new traffic entering and exiting during the peak hour. The ITE data provides the anticipated percentage of new traffic entering and exiting during the peak hour. Beyond the local area the distribution of traffic from the proposed development has been estimated based on the 2011 TTS data (excerpt attached as **Appendix M**). TTS data provides historical origin and destination work trip percentages for specific areas within the County and the Greater Toronto and Hamilton Area [GTHA].

The egress distribution of the residential trips generated by the proposed development was based on TTS data for trips originating in Zone 8614 between 07:00 and 09:00. Logically, the distribution of ingress traffic will follow the inverse of the exiting traffic distribution. For each of the individual areas identified in the TTS data, we have selected the probable route of travel, assuming that people will select their route primarily based on travel time.

Trips generated by the mixed-use developable areas in the proposed development has been distributed proportionately with the existing traffic volumes on the roads in the study area.

It is anticipated that some traffic generated by the proposed development travelling north on County Road 25 would ultimately take the Future Collector (once constructed) to bypass main intersections within the Town during peak hours; however, for the purposes of analysis we have conservatively assumed all traffic generated by the proposed development to be assigned to the existing local network.

For site traffic travelling southeast on County Road 109 we anticipate some traffic to take an alternative route and use the Future Collector (once constructed) onto the Amaranth Townline to

access County Road 109. It is assumed that 30% of site traffic travelling southeast on County Road 109 would use the Future Collector. For the purposes of this report we have assigned all this traffic at the Country Road 25 / Industrial Drive intersection where there will be a connection to the Future Collector via the internal network of the Moco Subdivision. This assumption is based on the recommendations in the GVTMP regarding the future collector.

Table 11 summarizes the residential trip distribution for the Moco Subdivision and Corseed Subdivision.

Table 11 – Traffic Distribution Summary

Travel Direction (to/from)	Percent of Total Traffic Generation (Phase 1)
North (via County Road 25)	32%
Southwest	14%
Southeast	54%
Total	100%

Figure C and **E** in **Appendix L** illustrates the traffic distribution pattern for the residential and commercial component of the proposed development respectively.

It is assumed that the residential component will be constructed and completely occupied by 2021 and the mixed-use residential and commercial component to be operational by 2031.

Using the traffic distribution patterns and timing assumptions noted above, the 2021/2026 and 2031 development traffic assignment during the AM and PM peak hour for the Corseed Subdivision is illustrated in **Figure 14** and **15** respectively.

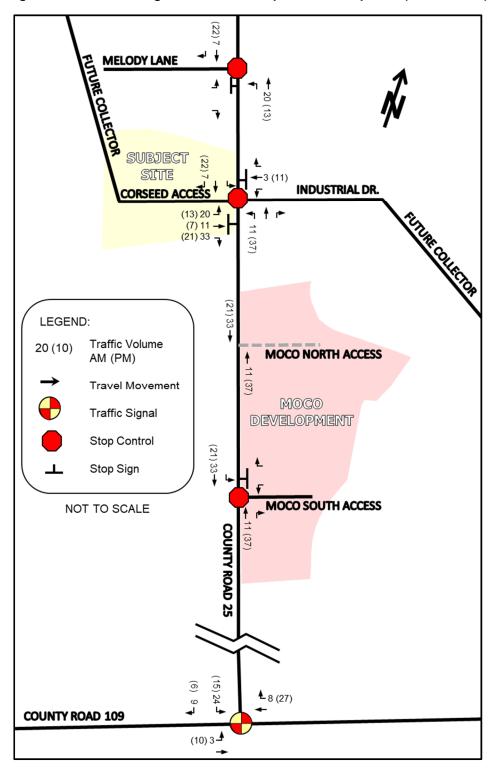


Figure 14 - Traffic Assignment for the Proposed Development (2021 & 2026)

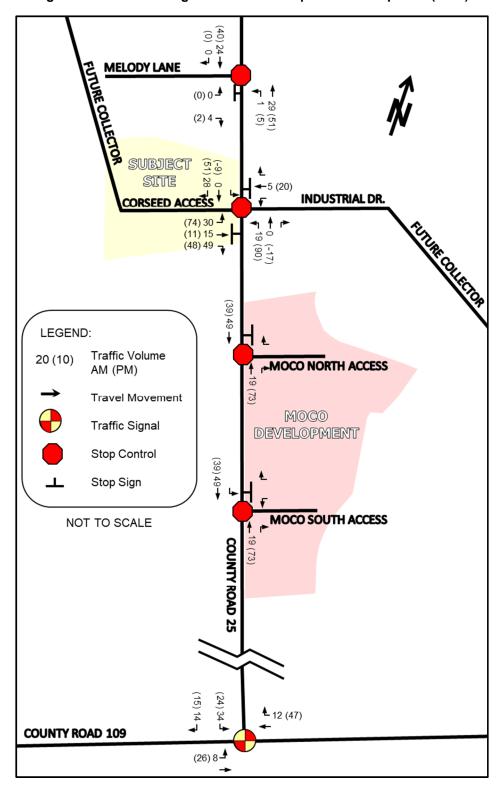
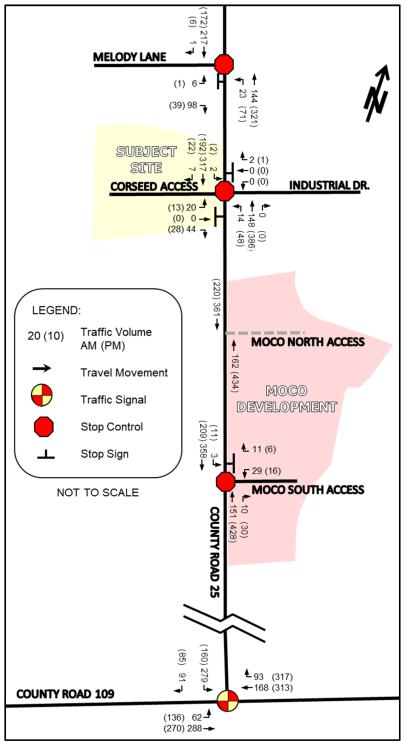


Figure 15 – Traffic Assignment for the Proposed Development (2031)



4.3 Total Horizon Year Traffic Volumes with the Proposed Development

For the total (2021, 2026 and 2031) horizon year traffic volumes, the proposed development traffic was added to the background (2021, 2026 and 2031) traffic volumes. The resulting total (2021, 2026 and 2031) horizon year total traffic volume for the AM and PM peak hour can be found in **Figure 16**, **17** and **18**.

Figure 16 – Total (2021) Peak Hour Traffic Volumes with Proposed Development

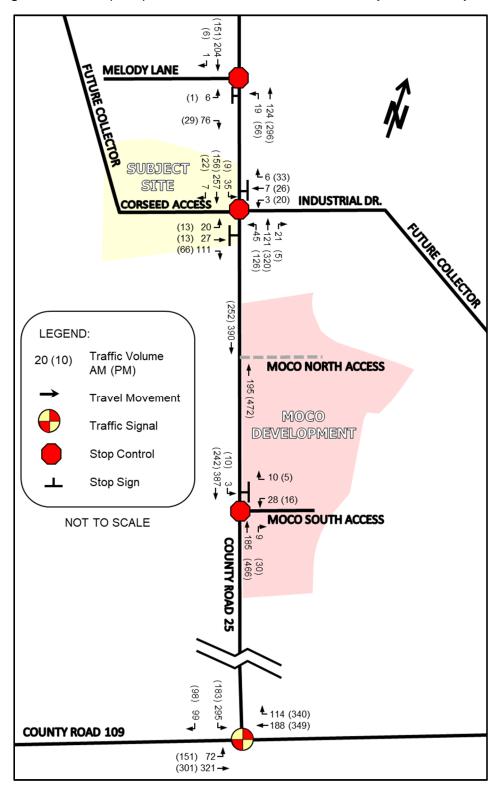


Figure 17 - Total (2026) Peak Hour Traffic Volumes with Proposed Development

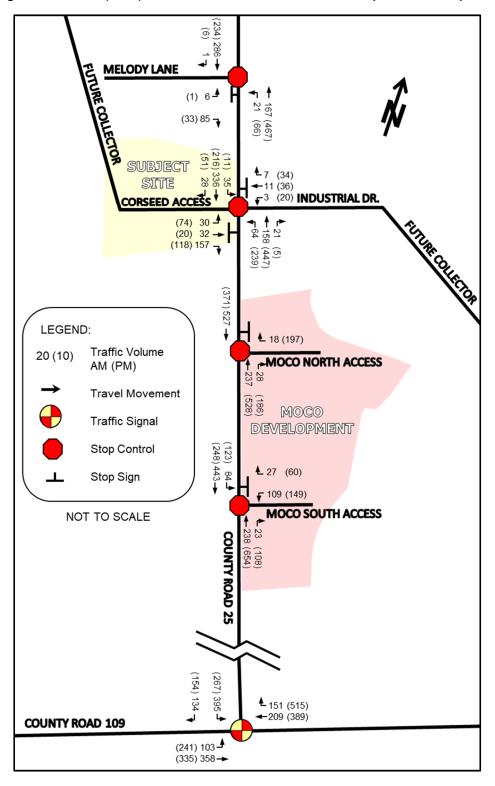


Figure 18 - Total (2031) Peak Hour Traffic Volumes with Proposed Development

5 Intersection Operation with Proposed Development

5.1 **2021 Horizon Year LOS with Full Development**

The 2021 horizon year was evaluated to determine how the study area would function at build-out of Phase 1 of the Corseed Subdivision. In this scenario, existing intersection geometry and traffic control have been utilized for this scenario. The proposed intersection of Corseed Access & Industrial Drive / Country Road 25 is assumed to be unsignalized with two-way stop control for eastbound and westbound movements.

The results of the LOS analysis under total (2021) traffic volumes during the AM and PM peak hour can be found below in **Table 12**. Detailed output of the Synchro analysis can be found in **Appendix E**.

Weekday AM Peak Hour Weekday PM Peak Hour Location 95% Queue (m) LOS 95% Queue (m) (E-W Street / N-S Delay LOS V/C Delay (s) V/C Street) Model Actual (s) Model Actual Melody Lane / County Road 25 2.7 Α 1.8 Α (unsignalized) ΕB 0.16 10.7 В 0.05 9.5 Α Corseed Access & Industrial Drive / 1.6 Α 1.5 Α County Road 25 (unsignalized) 0.12 12.2 В 0.08 12.1 В NB 0.01 8.0 Α 0.04 1.2 Α WB 0.00 9.1 0.00 10.7 В Α County Road 109 / County Road 25 0.51 19.8 В 0.43 14.8 R (signalized) EBL В 12 75 12.7 25 75 0.13 10.8 0.32 В EBT 0.37 12.8 В 0.35 12.6 В WBT 0.24 11.6 В 13.1 В 0.40 В 7 95 WBR 0.07 10.4 0.22 11.5 В 12 95 SB 0.72 32.8 С 0.47 25.2 С

Table 12 - Total (2021) LOS

The results of the LOS analysis indicate that the study area intersections are operating within the typical design standards noted in Section 3.1.

The anticipated queue length does not exceed the existing storage length and will not queue back to adjacent intersections. Consequently, there are no issues with the anticipated queuing in the study area.

An analysis was completed for left turn movements at all unsignalized intersections within the study area based on the criteria outlined in Appendix 9A of the MTO DS.

A northbound left turn lane on County Road 25 at Melody Lane is warranted with a 15 metre storage length; however, widening the road at this intersection is not feasible. Consequently, for the purpose of this analysis, it is assumed that a northbound left turn lane will not be constructed on County Road 25 at Melody Lane.

A northbound left turn lane is marginally over the warrant based on the above-noted criteria for the Corseed Access & Industrial Drive / County Road 25 intersection; however, since the control delay and V/C ratio for this movement are very low, a northbound left turn lane is not recommended for this horizon year.

No additional left turn lanes are warranted in the study area. MTO DS left turn warrant graphs are provided in **Appendix G**.

A review of the need for additional auxiliary right turn lanes at all unsignalized intersections was completed as part of our analysis. The results of the Synchro analysis indicate that there is excess capacity for all movements; consequently, additional auxiliary right turn lanes are not recommended.

Based on the Ontario Traffic Manual Book 12 *Signal Justification*, traffic signals are not warranted at any of the unsignalized intersections (results are provided in **Appendix H**).

No improvements are required at the within the study area.

5.2 **2026 Horizon Year LOS with Full Development**

The 2026 horizon year was evaluated to determine how the study area would function five years following Phase 1 build-out of the Corseed Development. Existing traffic control have been utilized for this scenario.

The results of the LOS analysis under Total (2026) traffic volumes during the AM and PM peak hour can be found below in **Table 13**. Detailed output of the Synchro analysis can be found in **Appendix E**.

Weekday AM Peak Hour Weekday PM Peak Hour 95% Queue 95% Queue Location Delay Delay LOS (E-W Street / N-S Street) V/C LOS V/C (m) (m) (s) (s) Model Actual Model Actual Melody Lane / County Road 25 24 Α 1.5 Δ (unsignalized) 10.3 В 0.04 9.3 Α EΒ 0.12 Corseed Access & Industrial Drive / County Road 25 4.5 Α 4.8 Α (unsignalized) 0.30 FB 14.0 R 0.20 13.9 В WB 0.04 13.7 В 0.26 19.5 С County Road 109 / County Road 25 0.55 С В 20.6 0.48 13.5 (signalized) EBL В 75 0.39 0.15 11.0 13 13.5 В 29 75 EBT 0.41 13.2 В 0.39 13.0 В WBT 0.27 11.9 0.45 В В 13.6 В 8 95 13 95 WBR | 0.09 10.5 0.24 11.6 В SB 0.77 35.5 D 0.55 26.9

Table 13 - Total (2026) LOS

The results of the LOS analysis indicate that the study area intersections are operating within the typical design standards noted in Section 3.1.

The anticipated queue length does not exceed the existing storage length and will not queue back to adjacent intersections. Consequently, there are no issues with the anticipated queuing in the study area.

An analysis was completed for left turn movements at all unsignalized intersections within the study area based on the criteria outlined in Appendix 9A of the MTO DS. No left turn lanes are warranted. MTO DS left turn warrant graphs are provided in **Appendix G**.

A review of the need for additional auxiliary right turn lanes at all unsignalized intersections was completed as part of our analysis. The results of the Synchro analysis indicate that there is excess capacity for all movements; consequently, additional auxiliary right turn lanes are not recommended.

Based on the Ontario Traffic Manual Book 12 *Signal Justification*, traffic signals are not warranted at any of the unsignalized intersections (results are provided in **Appendix H**).

No improvements are required at the within the study area.

5.3 **2031 Horizon Year LOS with Full Development**

The 2031 horizon year was evaluated for long-term right-of-way planning purposes. Traffic signal timing has been optimized at the County Road 109 / County Road 25 intersection to maximize the operational capacity of the existing intersection geometry.

The results of the LOS analysis under total (2031) traffic volumes during the AM and PM peak hour can be found below in **Table 14**. Detailed output of the Synchro analysis can be found in **Appendix E**.

Weekday AM Peak Hour Weekday PM Peak Hour 95% Queue 95% Queue Location Delay Delay (E-W Street / N-S Street) V/C LOS V/C LOS Actua (s) (s) Model Actual Model Melody Lane / County Road 25 2.2 Α 14 В (unsignalized) ΕB В 0.16 11.3 0.05 10.0 Α Corseed Access & Industrial Drive / 6.2 48.1 В County Road 25 Α (unsignalized) EΒ 0.51 20.5 С 22 1.36 248.2 F 106 --0.68 0.07 WB 17.4 С 71.2 F -County Road 109 / County Road 25 0.67 24.1 С 0.73 21.1 С (signalized) В 0.72 С EBL 0.26 17.8 24 75 26.2 71 75 0.55 EBT 21.5 С 0.46 15.8 В WBT 0.36 18.7 В 0.52 15.5 В WBR В 16.2 В 11 95 16 95 0.11 0.36 14.1 0.79 31.4 0.76

Table 14 - Total (2031) LOS

The results of the LOS analysis indicate that all intersection in the study area will operate at an acceptable LOS for all turning movements. However, the eastbound movement at the Corseed Access & Industrial Drive / County Road 25 intersection is operating outside the typical design limits noted in Section 3.1 during the PM peak hour. Based on the Ontario Traffic Manual Book 12 Signal Justification, traffic signals are not warranted at any of the study area intersections (results are provided in **Appendix H**); however, due to the anticipated control delay for the eastbound movement at this intersection, it is recommended that the Town plan to install traffic signals at this intersection before 2031.

The results of the Synchro analysis with the above-noted improvements can be found below in **Table 15.** Detailed output of the Synchro analysis can be found in **Appendix F**. It is recommended that the Town review the traffic volumes at this intersection closer to the anticipated construction date to assess the recommendation for signalization at this intersection.

Weekday AM Peak Hour Weekday PM Peak Hour 95% Queue 95% Queue Location Delay Delay (E-W Street / N-S Street) V/C V/C LOS (m) LOS (m) (s) (s) Model Actual Model Actual Corseed Access & Industrial Drive / 0.35 10.0 В 0.45 В County Road 25 11.1 (signalized) ΕB 0.40 24.6 С 24 0.59 27.4 С 33 _ С WB 0.07 22.4 С 0.25 22.8 **NBL** 0.11 4.2 Α 9 65 0.37 7.1 Α 31 65 **NBTR** 4.3 6.8 0.17 Α 0.41 Α -SBL 0.05 3.8 Α 5 55 0.02 4.4 Α 3 55 SBTR 0.34 5.4 Α 0.24 5.5

Table 15 – Total (2031) LOS with Improvements

The results of the LOS analysis indicate that the study area intersections are operating within the typical design standards noted in Section 3.1.

It is recommended that the County continue to monitor the County Road 109 / County Road 25 intersection operation. Ultimately, a protected eastbound left turn phase may be warranted and / an auxiliary southbound right turn lane on County Road 25.

An analysis was completed for the northbound left turn movement on County Road 25 at Melody Lane is warranted with a 25 metre storage length; however, as noted in Section 3.4, widening the road at this intersection is not feasible. Consequently, for the purpose of this analysis, it is assumed that a northbound left turn lane will not be constructed on County Road 25 at Melody Lane. MTO DS left turn warrant graphs are provided in **Appendix G**.

A review of the need for additional auxiliary right turn lanes at all unsignalized intersections was completed as part of our analysis. The results of the Synchro analysis indicate that there is excess capacity for all movements; consequently, additional auxiliary right turn lanes are not recommended.

No other improvements are recommended within the study area.

5.4 Site Access and Intersection Spacing Review

Prior to the development of the future mixed-use block, the proposed Corseed Access & Industrial Drive / County Road 25 intersection will operate efficiently using unsignalized control with two-way stop control for westbound and eastbound traffic at County Road 25. One lane for egress traffic and one lane for ingress traffic for the west leg of the intersection will provide the necessary capacity for Phase 1 of the proposed development.

As noted in Section 5.3, it is anticipated that this intersection may require traffic signalization by 2031 to reduce the anticipated eastbound delay at this intersection.

Figure 19 has been provided to provide a preliminary intersection alignment concept for the proposed intersection of the Corseed Site Access & Industrial Road / County Road 25. The sight distance for vehicles approaching the intersection is greater than 120 metres in all cases, which exceeds the sight stopping distance requirement. The proposed Corseed Access is constrained by a number of factors;

however, the proposed preliminary alignment would not result in any operational or traffic safety issues. Consequently, the proposed alignment is acceptable for the intended use.

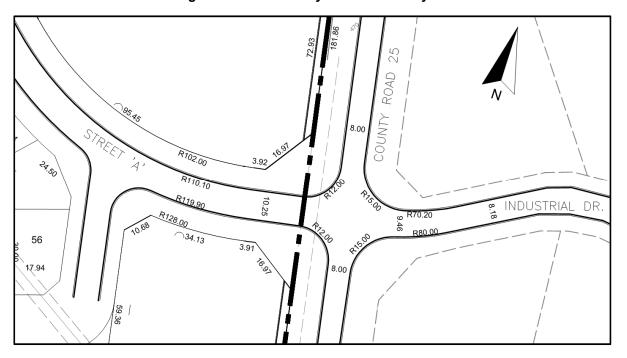


Figure 19 - Preliminary Intersection Layout

A review of the proposed site access configuration for the proposed development was completed as part of our analysis. The existing and proposed intersection spacing dimensions are illustrated in Figure 2. The proposed spacing between the Corseed Access and the Moco South Access exceeds the County's Entrance Policy minimum intersection spacing – for County Roads with a posted speed limit greater than 80 km/h (365 metres).

The Corseed Access is located 294 metres south of the existing Melody Lane / County Road 25 intersection, which is less than the minimum intersection – for County Roads with a posted speed limit less than 80 km/h (300 metres); however, the access is aligned with the existing Industrial Drive intersection. Traffic movements and queuing at the adjacent intersections are not anticipated to result in any operational issues, consequently, no change to the proposed intersection spacing is recommended.

The specific location of the access driveway(s) for Block 5 [Mixed-Use Block] and Block 6 [Commercial Block] are not known at this time. Access to the Commercial Block directly across from Street 'B' would provide the necessary sight stopping distance (85 metres) and driveway spacing (55 metre) as identified in the TAC Guidelines. Sight triangles will need to be reviewed during the Site Plan approval stage of development. A right-in, right-out [RIRO] access to the Mixed-Use Block could be provided via Street 'A' and a secondary access could be provided via Street 'B'.

The specific location of the Moco North Access is not known at this time. A review of the proposed intersection spacing for this access will be completed at a later date, when more information is known about the proposed access configuration.

5.5 **Pedestrian Movements Review**

In order to facilitate pedestrian movements, the following pedestrian infrastructure is proposed:

- 1) Sidewalks will be constructed on both sides along of Street A and along one side of all other internal roads in the proposed development;
- 2) A connection can be provided from the parkland block in the proposed development to the Upper Grand Trailway; and
- 3) A sidewalk will be constructed within the 3.0 metre block proposed across the frontage of the subject site, west of the County Road 25 right-of-way [ROW]. The sidewalk will transition into the Town's existing ROW for Water Street (County Road 25), starting at the south edge of the Upper Grand Trailway. A sidewalk will be constructed on the west side of Water Street (County Road 25) from the Upper Grand Trailway to Melody, within the Town's existing ROW.

5.6 Sight Distance Review

A review of the available sight distance for the proposed Corseed Access was completed as part of this analysis.

The available sight distance south of the proposed Corseed Access for egress movements is significantly greater than the County's minimum sight distance requirements for a commercial entrance with a posted speed limit of 60km/h (180 metres). The available sight distance north of the proposed Corseed Access was determined based on field measurements obtained during a site visit. The egress sight distance north of the proposed Corseed Access (139 metres) is marginally below the commercial entrance sight distance requirements for a posted speed limit of 40km/h (140 metres); however, since the variation in sight distance is relatively minor (1 metre) and the sight distance meet the requirement for a residential entrance for a posted speed limit of 50km/h, the sight distance is acceptable for the intended use. No additional improvements are recommended.

An additional review of the sight distance for the future Street B was completed as part of our analysis. The sight distance east and west of Street B is greater than the minimum stopping sight distance requirements as identified in the Transportation Association of Canada Design Guide for Canadian Roads (2017) [TAC Guidelines] for a design speed of 60km/h (85 metres). Furthermore, vehicles turning into the Corseed Access will turning at much slower speeds consequently, there are no issues with the sightlines at Street B.

A relocation of the proposed Corseed Access north or south would result in a skewed intersection alignment with the existing location of Industrial Drive, which is not preferred; consequently, the relocation of the Corseed Access is not recommended. It is recommended that the existing 60km/h speed limit zone is converted to a 50km/h zone, to ensure that the intersection of County Road 25 / Industrial Drive / Corseed Access meets the County's residential sight distance requirements.

5.7 Road Design

The road structure for the roads within the proposed development will meet the Town standards for local and collector roadways. Street A will have a 26 metre ROW and be classified as a collector road to match the Future Collector road connection. Street B & Street C will have a 20 metre ROW and be classified as local roads.

6 **Summary**

Corseed Inc. has retained **JD Engineering** to prepare this traffic impact study in support of the Draft Plan Application for the Corseed Subdivision in the Town of Grand Valley, County of Dufferin. The proposed site plan is shown in **Appendix A**.

The proposed Corseed Subdivision will include the following:

Single Detached 85 unitsTownhouses 29 units

 Future Mixed-Use blocks (assumed from the ratio of developable area between Moco and Corseed)

TownhomesCommercial DevelopmentTBD

Development plans for the mixed-use blocks for the proposed development have not been finalized at this time. A concept plan for the future mixed-use blocks in the proposed development is not available at this time, consequently, for the purpose of this analysis, it is assumed that the traffic generated by the future mixed-use blocks in the proposed development will be proportionate to the traffic generated by the future mixed-use blocks in the proposed Moco Subdivision based on the relative developable areas.

This chapter summarizes the conclusions and recommendations from the study.

- 1. The proposed residential development [Phase 1] in the Corseed Subdivision is expected to generate a total of 85 AM and 111 PM peak hour trips.
- 2. The proposed ultimate development of the Corseed Subdivision, including the future mixeduse development, is expected to generate a total of 148 AM and 246 PM primary peak hour trips.
- 3. Background traffic and pedestrian counts were completed for the existing intersections of County Road 25 / Melody Lane and County Road 25 / County Road 109 on Tuesday August 19th, 2014.
- 4. Level-of-service [LOS] analysis was completed at the study area intersections, using the existing (2016) and background (2021 & 2026) traffic volumes without the proposed development. This enabled a review of existing and future traffic deficiencies that would be present without the influence of the proposed development. Based on the background 2021 traffic volume, a northbound left turn lane is warranted at the intersection of Melody Lane / County Road 25; however, based on our discussions with the Town, widening the road at this intersection is not feasible.
- The following improvements are recommended as a result of the background 2026 traffic volume:

Future Collector & Industrial Drive / Country Road 25

- A northbound left turn lane is recommended at the intersection of Future Collector & Industrial Drive / County Road 25 with 25 metre storage, 40 metre parallel and 115 metre taper length.
- A southbound left turn lane is recommended at the intersection of Future Collector & Industrial Drive / County Road 25 with 15 metre storage, 40 metre parallel and 115 metre taper length.

- 6. No other geometric or traffic signage improvements were recommended at the intersections in the study area as a result of the existing (2016) or background (2021 & 2026) traffic volumes without the proposed development.
- 7. An estimate of the amount of traffic that would be generated by the Subject Site was prepared and assigned to the study area streets and intersections.
- 8. LOS analysis was completed under total (2021, 2026 & 2031) traffic volumes with the proposed development operational at the study area intersections.
- 9. No geometric or traffic signage improvements are recommended at the existing Melody Lane / County Road 25 or County Road 25 / County Road 109 intersections as a result of the total (2021, 2026 & 2031) traffic volumes with the proposed development. As noted above, a northbound left turn lane is warranted at the intersection of Melody Lane / County Road 25; however, based on our discussions with the Town, widening the road at this intersection is not feasible.
- 10. The following improvements are recommended as a result of the Phase 1 Corseed Development:
 - The proposed Corseed Access & Industrial Drive / County Road 25 intersection will
 operate efficiently using unsignalized control with two-way stop control for westbound
 and eastbound traffic at County Road 25. One lane for egress traffic and one lane
 for ingress traffic for the west leg of the intersection will provide the necessary
 capacity for the proposed development.
- 11. The following improvements are recommended as a result of the ultimate Corseed Development (2031). These recommendations should be confirmed once the specifics for the future mixed-use blocks are known:

Corseed Access & Industrial Drive / Country Road 25

Total (2031) Traffic Volume


- Installation of traffic signals to improve the eastbound control delay
- 12. The road structure for the internal streets within the proposed development will meet Town standards for local and collector roadways.
- 13. It is recommended that the existing 60km/h speed limit zone is converted to a 50km/h zone, to ensure that the intersection of County Road 25 / Industrial Drive / Corseed Access meets the County's residential sight distance requirements.

In summary, the proposed development will not cause any operational issues and will not add significant delay or congestion to the local roadway network.

Appendix A – Draft Plan of Subdivision

Scale 1:20,000

DRAFT PLAN OF SUBDIVISION

PART OF LOT 30, CONCESSION 2
FORMERY UN HE TOWNSHIP OF EAST LUTHER
TOWNSHIP OF EAST EAST LUTHER - GRAND VALLEY
COUNTY OF DUFFERIN

Scale 1:1,250 125 150m

4.907

VAL II	VAL INFORMATION REQUIRED 151(17) OF THE PLANNING ACT	VAL INFORMATION REQUIRED UNDER	20	
PLAN	d) SHOWN ON LAND	f) SHOWN ON PLAN	i) GUELPH LOAM	
PLAN	USE SCHEDULE	f1) NONE	j) SHOWN ON PLAN	
PLAN	e) SHOWN ON PLAN	g) SHOWN ON PLAN	k) ALL MUNICIPAL SERVICES	
		WANTED WATER	NONE	_

N 51(1	N 51(17) OF THE PLANNING ACT	ING ACT		
N PLAN	d) SHOWN ON LAND	f) SHOWN ON PLAN	I) GUELPH LOAM	
N PLAN	USE SCHEDULE	f1) NONE	j) SHOWN ON PLAN	
N PLAN	e) SHOWN ON PLAN	g) SHOWN ON PLAN	k) ALL MUNICIPAL SERVICES	
		h) MUNICIPAL WATER	I) NONE	

I) NONE	h) MUNICIPAL WATER		
k) ALL MUNICIPAL SERVICES	g) SHOWN ON PLAN	e) SHOWN ON PLAN	PLAN
j) SHOWN ON PLAN	f1) NONE	USE SCHEDULE	PLAN
i) GUELPH LOAM	f) SHOWN ON PLAN	d) SHOWN ON LAND	PLAN

	and the same of the same of the	Company of the Compan	O department of many over	_
PLAN	USE SCHEDULE	f1) NONE	j) SHOWN ON PLAN	
PLAN	e) SHOWN ON PLAN	g) SHOWN ON PLAN	k) ALL MUNICIPAL SERVICES	
		h) MUNICIPAL WATER	I) NONE	
S CEF	S CERTIFICATE			
THOR	ZE INNOVATIVE PLAI	JTHORIZE INNOVATIVE PLANNING SOLUTIONS TO PREPARE THIS	PREPARE THIS	

CORSEED INC.

	No.		
	Date		S
INNOVATIVE DI ANNINIO SOI LITIONIS	Description By		SCHEDULE OF REVISIONS

Appendix B – Traffic Counts

Ontario Traffic Inc **Morning Peak Diagram Specified Period** One Hour Peak From: 7:30:00 **From:** 7:00:00 To: 10:00:00 To: 8:30:00 Municipality: Grand Valley Weather conditions: Site #: 1422800001 Intersection: County Rd 109 & Water St (CR 25) Person(s) who counted: TFR File #: 21 Count date: 9-Oct-14 ** Signalized Intersection ** Major Road: County Rd 109 runs W/E 0 0 North Leg Total: 298 Heavys 0 Heavys 0 East Leg Total: 591 12 North Entering: 200 Trucks 10 2 East Entering: Trucks 16 197 North Peds: East Peds: 2 Cars 43 145 188 Cars 82 0 \mathbb{X} Peds Cross: Totals 53 147 Totals 98 Peds Cross: ⋈ Water St (CR 25) Totals Trucks Heavys Totals Heavys Trucks Cars Cars 49 149 198 0 52 106 145 39 0 County Rd 109 0 150 47 Heavys Trucks Cars Totals County Rd 109 0 8 38 46 37 210 247 Trucks Heavys Totals Cars 45 248 355 39 0 394 \mathbb{X} Peds Cross: West Peds: 0 West Entering: 293 West Leg Total: 491 **Comments**

Ontario Traffic Inc **Afternoon Peak Diagram Specified Period One Hour Peak** From: 16:45:00 From: 16:00:00 To: 17:45:00 19:00:00 To: Municipality: Grand Valley Weather conditions: Site #: 1422800001 Intersection: County Rd 109 & Water St (CR 25) Person(s) who counted: TFR File #: 21 Count date: 9-Oct-14 ** Signalized Intersection ** Major Road: County Rd 109 runs W/E 0 North Leg Total: 396 Heavys 0 0 Heavys 0 East Leg Total: 749 10 North Entering: 133 Trucks 6 4 East Entering: Trucks 19 441 North Peds: East Peds: 0 Cars 51 72 123 Cars 244 0 \mathbb{X} ⋈ Peds Cross: Peds Cross: Totals 57 76 Totals 263 Water St (CR 25) Totals Trucks Heavys Totals Heavys Trucks Cars Cars 41 285 326 165 0 172 234 269 35 0 County Rd 109 399 0 42 Heavys Trucks Cars Totals County Rd 109 0 12 79 91 36 196 232 Trucks Heavys Totals Cars 48 275 268 40 0 308 \mathbb{X} Peds Cross: West Peds: 0 West Entering: 323 West Leg Total: 649 **Comments**

Ontario Traffic Inc

Total Count Diagram

Municipality: Grand Valley Site #: 1422800001

Intersection: County Rd 109 & Water St (CR 25)

TFR File #: 21

Count date: 9-Oct-14 Weather conditions:

Person(s) who counted:

** Signalized Intersection **

North Leg Total: 1827 Heavys 0 North Entering: 913 Trucks 36

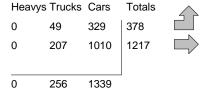
North Peds: 3 \bowtie Peds Cross:

0 0 65 29 Cars 300 548 Totals 336

848 577

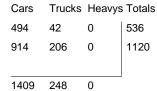
Heavys 0 Trucks 91 Cars 823

Totals 914

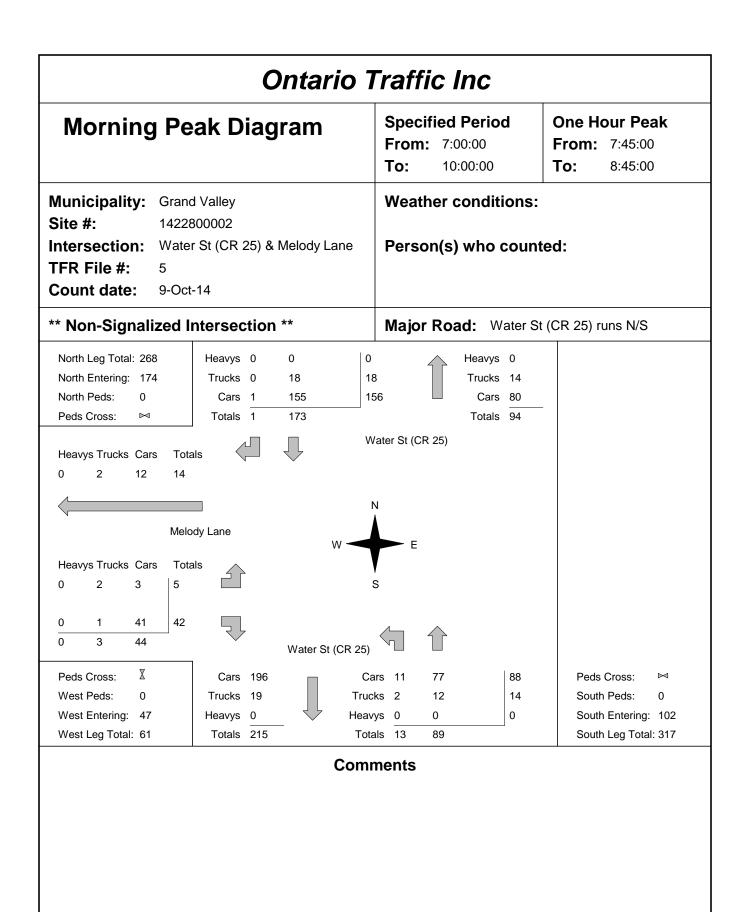

Major Road: County Rd 109 runs W/E

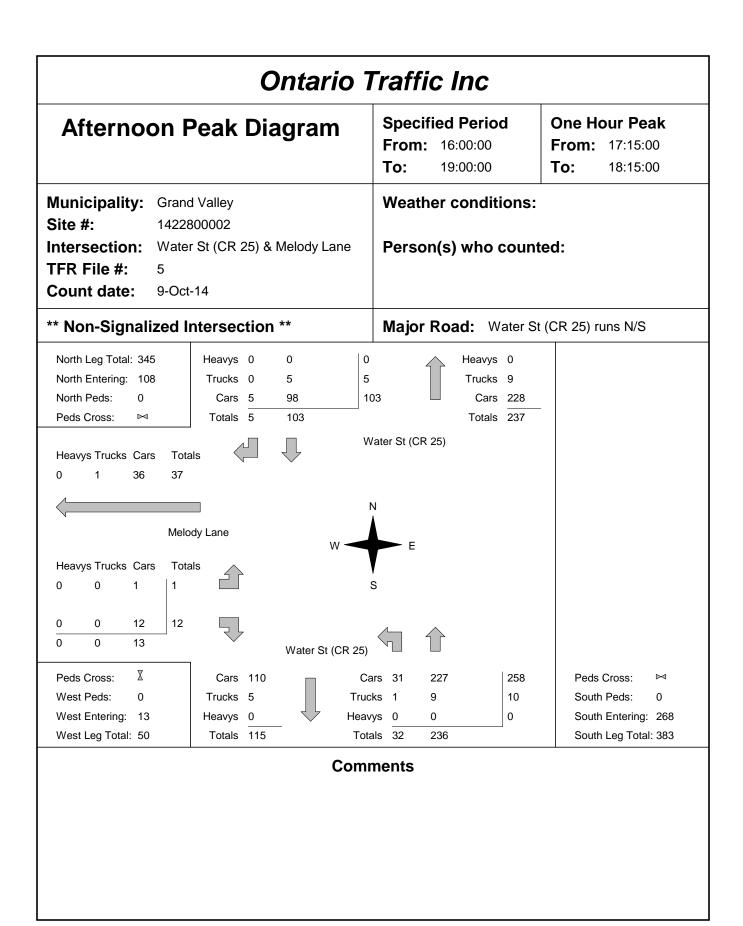
East Leg Total: 3451 East Entering: 1657 East Peds: 0 \mathbb{X} Peds Cross:

Heavys Trucks Cars Totals 242 1214 1456


County Rd 109

Water St (CR 25)




County Rd 109

Trucks Heavys Totals Cars 1558 236 1794

 \mathbb{X} Peds Cross: 0 West Peds: West Entering: 1595 West Leg Total: 3051

Comments

Ontario Traffic Inc

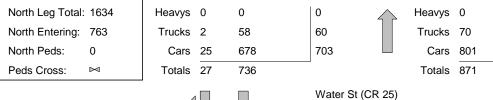
Total Count Diagram

Municipality: Grand Valley

Site #: 1422800002

Intersection: Water St (CR 25) & Melody Lane

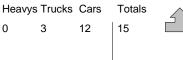
TFR File #: 5

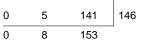

Count date: 9-Oct-14

Weather conditions:

Person(s) who counted:

** Non-Signalized Intersection **


Major Road: Water St (CR 25) runs N/S



Heavys Trucks Cars Totals
0 7 145 152

Cars	819	Cars	120	789	909
Trucks	63	Trucks	5	67	72
Heavys	0	Heavys	0	0	0
Totals	882	Totals	125	856	-

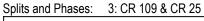
Peds Cross:
South Peds: 0

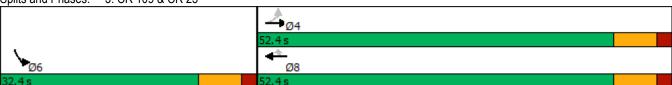
South Entering: 981

South Leg Total: 1863

Comments

Appendix C – Synchro Analysis Output – Existing Conditions

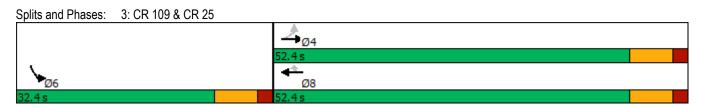

	ၨ	•	4	†	↓	4		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	N/			ર્ન	ĵ»			
Traffic Volume (veh/h)	5	44	14	93	188	1		
Future Volume (Veh/h)	5	44	14	93	188	1		
Sign Control	Stop			Free	Free			
Grade	0%			0%	0%			
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86		
Hourly flow rate (vph)	6	51	16	108	219	1		
Pedestrians								
Lane Width (m)								
Walking Speed (m/s)								
Percent Blockage								
Right turn flare (veh)								
Median type				None	None			
Median storage veh)								
Upstream signal (m)								
pX, platoon unblocked								
vC, conflicting volume	360	220	220					
vC1, stage 1 conf vol	000	220						
vC2, stage 2 conf vol								
VCu, unblocked vol	360	220	220					
C, single (s)	6.8	6.2	4.2					
tC, 2 stage (s)	0.0	0.2	7.2					
tF (s)	3.9	3.3	2.3					
o0 queue free %	99	94	99					
cM capacity (veh/h)	563	820	1276					
Direction, Lane #	EB 1	NB 1	SB 1					
Volume Total	57	124	220					
Volume Left	6	16	0					
Volume Right	51	0	1					
cSH	783	1276	1700					
Volume to Capacity	0.07	0.01	0.13					
Queue Length 95th (m)	1.8	0.3	0.0					
Control Delay (s)	10.0	1.1	0.0					
Lane LOS	A	Α						
Approach Delay (s)	10.0	1.1	0.0					
Approach LOS	Α							
ntersection Summary								
Average Delay			1.8					
ntersection Capacity Utilizati	ion		26.7%	IC	CU Level o	of Service	A	
Analysis Period (min)			15					


	•	-	←	•	-							
Lane Group	EBL	EBT	WBT	WBR	SBL			 	 	 	 	
Lane Configurations	ሻ	1	†	7	W							
Traffic Volume (vph)	48	258	151	54	154							
Future Volume (vph)	48	258	151	54	154							
Lane Group Flow (vph)	51	272	159	57	220							
Turn Type	Perm	NA	NA	Perm	Prot							
Protected Phases		4	8		6							
Permitted Phases	4			8								
Detector Phase	4	4	8	8	6							
Switch Phase												
Minimum Initial (s)	40.0	40.0	40.0	40.0	10.0							
Minimum Split (s)	47.4	47.4	47.4	47.4	24.4							
Total Split (s)	52.4	52.4	52.4	52.4	32.4							
Total Split (%)	61.8%	61.8%	61.8%	61.8%	38.2%							
Yellow Time (s)	5.4	5.4	5.4	5.4	5.4							
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0							
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0							
Total Lost Time (s)	7.4	7.4	7.4	7.4	7.4							
Lead/Lag												
Lead-Lag Optimize?												
Recall Mode	None	None	None	None	Max							
v/c Ratio	0.10	0.33	0.21	0.08	0.41							
Control Delay	11.1	13.3	12.1	3.5	22.2							
Queue Delay	0.0	0.0	0.0	0.0	0.0							
Total Delay	11.1	13.3	12.1	3.5	22.2							
Queue Length 50th (m)	3.8	23.3	12.7	0.0	23.2							
Queue Length 95th (m)	9.4	38.9	23.4	5.2	41.9							
Internal Link Dist (m)		1152.8	1187.2		708.3							
Turn Bay Length (m)	75.0			95.0								
Base Capacity (vph)	593	921	834	808	532							
Starvation Cap Reductn	0	0	0	0	0							
Spillback Cap Reductn	0	0	0	0	0							
Storage Cap Reductn	0	0	0	0	0							
Reduced v/c Ratio	0.09	0.30	0.19	0.07	0.41							
Internation Commons												

Intersection Summary

Cycle Length: 84.8 Actuated Cycle Length: 79.8

Natural Cycle: 75 Control Type: Semi Act-Uncoord


	•	-	←	•	\	4			
Movement	EBL	EBT	WBT	WBR	SBL	SBR			
Lane Configurations	ች	†	↑	7	W	-			
Traffic Volume (vph)	48	258	151	54	154	55			
Future Volume (vph)	48	258	151	54	154	55			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Total Lost time (s)	7.4	7.4	7.4	7.4	7.4				
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00				
Frt	1.00	1.00	1.00	0.85	0.96				
Flt Protected	0.95	1.00	1.00	1.00	0.96				
Satd. Flow (prot)	1526	1634	1479	1389	1653				
FIt Permitted	0.66	1.00	1.00	1.00	0.96				
Satd. Flow (perm)	1054	1634	1479	1389	1653				
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95			
Adj. Flow (vph)	51	272	159	57	162	58			
RTOR Reduction (vph)	0	0	0	28	15	0			
Lane Group Flow (vph)	51	272	159	29	205	0			
Heavy Vehicles (%)	17%	15%	27%	15%	1%	19%			
Turn Type	Perm	NA	NA	Perm	Prot				
Protected Phases		4	8		6				
Permitted Phases	4			8					
Actuated Green, G (s)	40.0	40.0	40.0	40.0	25.0				
Effective Green, g (s)	40.0	40.0	40.0	40.0	25.0				
Actuated g/C Ratio	0.50	0.50	0.50	0.50	0.31				
Clearance Time (s)	7.4	7.4	7.4	7.4	7.4				
/ehicle Extension (s)	5.0	5.0	5.0	5.0	4.0				
ane Grp Cap (vph)	528	819	741	696	517				
/s Ratio Prot		c0.17	0.11		c0.12				
/s Ratio Perm	0.05			0.02					
ı/c Ratio	0.10	0.33	0.21	0.04	0.40				
Jniform Delay, d1	10.4	11.9	11.1	10.1	21.5				
Progression Factor	1.00	1.00	1.00	1.00	1.00				
ncremental Delay, d2	0.2	0.5	0.3	0.1	2.3				
Delay (s)	10.6	12.4	11.4	10.2	23.8				
_evel of Service	В	В	В	В	С				
Approach Delay (s)		12.1	11.1		23.8				
Approach LOS		В	В		С				
Intersection Summary									
HCM 2000 Control Delay			15.2	H	CM 2000	Level of Service	!	В	
HCM 2000 Volume to Capaci	ty ratio		0.36						
Actuated Cycle Length (s)			79.8		um of lost			14.8	
Intersection Capacity Utilizati	on		79.0%	IC	U Level c	of Service		D	
Analysis Period (min)			15						
c Critical Lane Group									

	۶	•	1	†	+	1
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W			ર્ન	f)	
Traffic Volume (veh/h)	1	13	33	246	108	5
Future Volume (Veh/h)	1	13	33	246	108	5
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96
Hourly flow rate (vph)	1	14	34	256	113	5
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)				140110	140110	
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	440	116	118			
vC1, stage 1 conf vol	770	110	110			
vC2, stage 2 conf vol						
vCu, unblocked vol	440	116	118			
tC, single (s)	6.4	6.2	4.1			
tC, 2 stage (s)	0.4	0.2	4.1			
	3.5	3.3	2.2			
tF (s)	100	99	98			
p0 queue free %			1464			
cM capacity (veh/h)	565	942				
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total	15	290	118			
Volume Left	1	34	0			
Volume Right	14	0	5			
cSH	902	1464	1700			
Volume to Capacity	0.02	0.02	0.07			
Queue Length 95th (m)	0.4	0.5	0.0			
Control Delay (s)	9.1	1.1	0.0			
Lane LOS	Α	Α				
Approach Delay (s)	9.1	1.1	0.0			
Approach LOS	А					
Intersection Summary						
Average Delay			1.0			
Intersection Capacity Utiliza	ation		31.4%	IC	CU Level o	f Service
Analysis Period (min)			15	.,		
thanyono i chica (mini)			10			

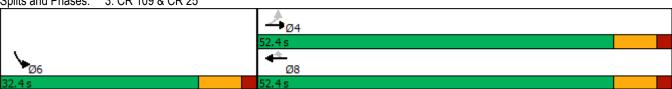
	•	-	•	•	-
Lane Group	EBL	EBT	WBT	WBR	SBL
Lane Configurations	ኝ	†		7	¥
Traffic Volume (vph)	95	242	281	180	79
Future Volume (vph)	95	242	281	180	79
Lane Group Flow (vph)	101	257	299	191	148
Turn Type	Perm	NA	NA	Perm	Prot
Protected Phases		4	8		6
Permitted Phases	4			8	
Detector Phase	4	4	8	8	6
Switch Phase		•			
Minimum Initial (s)	40.0	40.0	40.0	40.0	10.0
Minimum Split (s)	47.4	47.4	47.4	47.4	24.4
Total Split (s)	52.4	52.4	52.4	52.4	32.4
Total Split (%)	61.8%	61.8%	61.8%	61.8%	38.2%
Yellow Time (s)	5.4	5.4	5.4	5.4	5.4
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	7.4	7.4	7.4	7.4	7.4
Lead/Lag					
Lead-Lag Optimize?					
Recall Mode	None	None	None	None	Max
v/c Ratio	0.21	0.32	0.36	0.22	0.28
Control Delay	12.6	13.2	13.7	2.5	15.8
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	12.6	13.2	13.7	2.5	15.8
Queue Length 50th (m)	8.1	21.8	26.1	0.0	11.2
Queue Length 95th (m)	17.1	36.8	42.9	9.2	24.8
Internal Link Dist (m)		1152.8	1187.2		708.3
Turn Bay Length (m)	75.0			95.0	
Base Capacity (vph)	534	913	937	949	532
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.19	0.28	0.32	0.20	0.28
Intersection Summary					
Cycle Length, 94.9					

Cycle Length: 84.8
Actuated Cycle Length: 79.8

Natural Cycle: 75 Control Type: Semi Act-Uncoord

	٠	→	•	•	\	4	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	ች	†	†	7	¥		
Traffic Volume (vph)	95	242	281	180	79	60	
Future Volume (vph)	95	242	281	180	79	60	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	7.4	7.4	7.4	7.4	7.4		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00		
Frt	1.00	1.00	1.00	0.85	0.94		
Flt Protected	0.95	1.00	1.00	1.00	0.97		
Satd. Flow (prot)	1580	1620	1663	1536	1599		
FIt Permitted	0.57	1.00	1.00	1.00	0.97		
Satd. Flow (perm)	948	1620	1663	1536	1599		
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94	
Adj. Flow (vph)	101	257	299	191	84	64	
RTOR Reduction (vph)	0	0	0	95	32	0	
Lane Group Flow (vph)	101	257	299	96	116	0	
Heavy Vehicles (%)	13%	16%	13%	4%	5%	11%	
Turn Type	Perm	NA	NA	Perm	Prot		
Protected Phases		4	8		6		
Permitted Phases	4			8	-		
Actuated Green, G (s)	40.0	40.0	40.0	40.0	25.0		
Effective Green, g (s)	40.0	40.0	40.0	40.0	25.0		
Actuated g/C Ratio	0.50	0.50	0.50	0.50	0.31		
Clearance Time (s)	7.4	7.4	7.4	7.4	7.4		
Vehicle Extension (s)	5.0	5.0	5.0	5.0	4.0		
Lane Grp Cap (vph)	475	812	833	769	500		
v/s Ratio Prot		0.16	c0.18		c0.07		
v/s Ratio Perm	0.11			0.06			
v/c Ratio	0.21	0.32	0.36	0.12	0.23		
Uniform Delay, d1	11.1	11.8	12.1	10.6	20.3		
Progression Factor	1.00	1.00	1.00	1.00	1.00		
Incremental Delay, d2	0.5	0.5	0.6	0.2	1.1		
Delay (s)	11.6	12.3	12.7	10.7	21.4		
Level of Service	В	В	В	В	С		
Approach Delay (s)		12.1	11.9		21.4		
Approach LOS		В	В		С		
Intersection Summary							
HCM 2000 Control Delay			13.4	Н	CM 2000	Level of Service	В
HCM 2000 Volume to Capa	city ratio		0.31				
Actuated Cycle Length (s)			79.8	S	um of lost	time (s)	14.8
Intersection Capacity Utiliza	tion		93.5%	IC	CU Level o	of Service	F
Analysis Period (min)			15				
c Critical Lane Group							

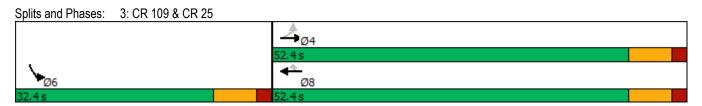
Appendix D – Synchro Analysis Output – Background Traffic Volumes



	•	•	•	†		4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			ર્ન	ĵ.	
Traffic Volume (veh/h)	6	98	23	124	210	1
Future Volume (Veh/h)	6	98	23	124	210	1
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86
Hourly flow rate (vph)	7	114	27	144	244	1
Pedestrians						•
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)				INOTIC	NOTIC	
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	442	244	245			
vC1, stage 1 conf vol	442	244	243			
vC2, stage 2 conf vol						
vCu, unblocked vol	442	244	245			
tC, single (s)	6.8	6.2	4.2			
	0.0	0.2	4.2			
tC, 2 stage (s)	3.9	3.3	2.3			
tF (s)	99	3.3 86	98			
p0 queue free %						
cM capacity (veh/h)	497	794	1249			
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total	121	171	245			
Volume Left	7	27	0			
Volume Right	114	0	1			
cSH	768	1249	1700			
Volume to Capacity	0.16	0.02	0.14			
Queue Length 95th (m)	4.2	0.5	0.0			
Control Delay (s)	10.6	1.4	0.0			
Lane LOS	В	Α				
Approach Delay (s)	10.6	1.4	0.0			
Approach LOS	В					
Intersection Summary						
Average Delay			2.8			
Intersection Capacity Utiliza	ation		35.3%	IC	CU Level c	f Service
Analysis Period (min)	ation		15		JO LOVOI C	1 OCI VIOC
Analysis i Gnou (IIIII)			10			

	•	•	†	/	/	↓
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	W		f)			4
Traffic Volume (veh/h)	0	2	148	0	2	317
Future Volume (Veh/h)	0	2	148	0	2	317
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	2	161	0	2	345
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	510	161			161	
vC1, stage 1 conf vol	0.0					
vC2, stage 2 conf vol						
vCu, unblocked vol	510	161			161	
tC, single (s)	6.4	6.2			4.1	
tC, 2 stage (s)	0.1	0.2				
tF (s)	3.5	3.3			2.2	
p0 queue free %	100	100			100	
cM capacity (veh/h)	526	889			1430	
					1400	
Direction, Lane #	WB 1	NB 1	SB 1			
Volume Total	2	161	347			
Volume Left	0	0	2			
Volume Right	2	0	0			
cSH	889	1700	1430			
Volume to Capacity	0.00	0.09	0.00			
Queue Length 95th (m)	0.1	0.0	0.0			
Control Delay (s)	9.1	0.0	0.1			
Lane LOS	Α		Α			
Approach Delay (s)	9.1	0.0	0.1			
Approach LOS	Α					
Intersection Summary						
Average Delay			0.1			
Intersection Capacity Utiliz	zation		28.3%	IC	Ulevelo	of Service
Analysis Period (min)	Zation		15	10	O LOVOI C	71 001 1100
Alialysis Fellou (IIIIII)			10			

	•	→	←	•	\
Lane Group	EBL	EBT	WBT	WBR	SBL
Lane Configurations	ሻ		1	7	W
Traffic Volume (vph)	59	288	168	82	244
Future Volume (vph)	59	288	168	82	244
Lane Group Flow (vph)	62	303	177	86	343
Turn Type	Perm	NA	NA	Perm	Prot
Protected Phases		4	8		6
Permitted Phases	4			8	
Detector Phase	4	4	8	8	6
Switch Phase					
Minimum Initial (s)	40.0	40.0	40.0	40.0	10.0
Minimum Split (s)	47.4	47.4	47.4	47.4	24.4
Total Split (s)	52.4	52.4	52.4	52.4	32.4
Total Split (%)	61.8%	61.8%	61.8%	61.8%	38.2%
Yellow Time (s)	5.4	5.4	5.4	5.4	5.4
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	7.4	7.4	7.4	7.4	7.4
Lead/Lag	,.,		,.,		
Lead-Lag Optimize?					
Recall Mode	None	None	None	None	Max
v/c Ratio	0.12	0.37	0.24	0.12	0.64
Control Delay	11.4	13.9	12.4	3.1	28.7
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	11.4	13.9	12.4	3.1	28.7
Queue Length 50th (m)	4.7	26.6	14.4	0.0	41.7
Queue Length 95th (m)	11.0	43.8	26.0	6.3	69.0
Internal Link Dist (m)	11.0	1152.8	1187.2	0.0	708.3
Turn Bay Length (m)	75.0	1102.0	1101.2	95.0	7 00.0
Base Capacity (vph)	584	921	834	820	533
Starvation Cap Reductn	0	0	004	020	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.11	0.33	0.21	0.10	0.64
	0.11	0.55	0.21	0.10	0.04
Intersection Summary					
Cycle Length: 84.8					
Actuated Cycle Length: 79.	8				
Natural Cycle: 75					
Control Type: Semi Act-Uno	coord				


	•	-	•	•	\	4	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	ች	<u></u>	<u> </u>	7	¥	05.1	
Traffic Volume (vph)	59	288	168	82	244	82	
Future Volume (vph)	59	288	168	82	244	82	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	7.4	7.4	7.4	7.4	7.4		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00		
Frt	1.00	1.00	1.00	0.85	0.97		
Flt Protected	0.95	1.00	1.00	1.00	0.96		
Satd. Flow (prot)	1526	1634	1479	1389	1658		
Flt Permitted	0.65	1.00	1.00	1.00	0.96		
Satd. Flow (perm)	1037	1634	1479	1389	1658		
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95	
Adj. Flow (vph)	62	303	177	86	257	86	
RTOR Reduction (vph)	0	0	0	43	14	0	
Lane Group Flow (vph)	62	303	177	43	329	0	
Heavy Vehicles (%)	17%	15%	27%	15%	1%	19%	
Turn Type	Perm	NA	NA	Perm	Prot	1070	
Protected Phases	1 01111	4	8	1 01111	6		
Permitted Phases	4		•	8	•		
Actuated Green, G (s)	40.0	40.0	40.0	40.0	25.0		
Effective Green, g (s)	40.0	40.0	40.0	40.0	25.0		
Actuated g/C Ratio	0.50	0.50	0.50	0.50	0.31		
Clearance Time (s)	7.4	7.4	7.4	7.4	7.4		
Vehicle Extension (s)	5.0	5.0	5.0	5.0	4.0		
Lane Grp Cap (vph)	519	819	741	696	519		
v/s Ratio Prot	0.10	c0.19	0.12	000	c0.20		
v/s Ratio Perm	0.06	00.10	0.12	0.03	00.20		
v/c Ratio	0.12	0.37	0.24	0.06	0.63		
Uniform Delay, d1	10.6	12.2	11.3	10.2	23.5		
Progression Factor	1.00	1.00	1.00	1.00	1.00		
Incremental Delay, d2	0.2	0.6	0.4	0.1	5.8		
Delay (s)	10.8	12.8	11.6	10.3	29.3		
Level of Service	В	В	В	В	C		
Approach Delay (s)		12.4	11.2		29.3		
Approach LOS		В	В		С		
Intersection Summary							
HCM 2000 Control Delay			18.1	Н	CM 2000	Level of Service	В
HCM 2000 Volume to Capa	acity ratio		0.47				
Actuated Cycle Length (s)	•		79.8	S	um of lost	time (s)	14.8
Intersection Capacity Utiliz	ation		79.9%			of Service	D
Analysis Period (min)			15				
c Critical Lane Group							

	•	*	•	†	+	✓
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			ની	ĵ»	
Traffic Volume (veh/h)	1	39	71	308	150	6
Future Volume (Veh/h)	1	39	71	308	150	6
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96
Hourly flow rate (vph)	1	41	74	321	156	6
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)				140110	140110	
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	628	159	162			
vC1, stage 1 conf vol	020	100	102			
vC2, stage 2 conf vol						
vCu, unblocked vol	628	159	162			
tC, single (s)	6.4	6.2	4.1			
tC, 2 stage (s)	0.4	0.2	7.1			
tF (s)	3.5	3.3	2.2			
p0 queue free %	100	95	95			
cM capacity (veh/h)	426	892	1411			
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total	42	395	162			
Volume Left	1	74	0			
Volume Right	41	0	6			
cSH	869	1411	1700			
Volume to Capacity	0.05	0.05	0.10			
Queue Length 95th (m)	1.2	1.3	0.0			
Control Delay (s)	9.4	1.8	0.0			
Lane LOS	Α	Α				
Approach Delay (s)	9.4	1.8	0.0			
Approach LOS	Α					
Intersection Summary						
Average Delay			1.9			
Intersection Capacity Utiliz	ation		41.7%	IC	CU Level c	f Sarvica
Analysis Period (min)	alion		15	IC	O Level C	i Service
Alialysis Feliou (IIIII)			15			

	•	•	†	~	/	↓
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	W		1>			4
Traffic Volume (veh/h)	0	1	386	0	2	192
Future Volume (Veh/h)	0	1	386	0	2	192
Sign Control	Stop		Free			Free
Grade	0%		0%			0%
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	1	420	0	2	209
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type			None			None
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	633	420			420	
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	633	420			420	
tC, single (s)	6.4	6.2			4.1	
tC, 2 stage (s)						
tF(s)	3.5	3.3			2.2	
p0 queue free %	100	100			100	
cM capacity (veh/h)	446	638			1150	
Direction, Lane #	WB 1	NB 1	SB 1	_		_
Volume Total	1	420	211			
Volume Left	0	420	2			
	1					
Volume Right		1700	0			
cSH	638	1700	1150			
Volume to Capacity	0.00	0.25	0.00			
Queue Length 95th (m)	0.0	0.0	0.0			
Control Delay (s)	10.7	0.0	0.1			
Lane LOS	В		A			
Approach Delay (s)	10.7	0.0	0.1			
Approach LOS	В					
Intersection Summary						
Average Delay			0.0			
Intersection Capacity Utiliz	zation		30.3%	IC	U Level o	of Service
Analysis Period (min)			15			

	٠	-	←	*	-
Lane Group	EBL	EBT	WBT	WBR	SBL
Lane Configurations	ሻ		†	7	¥
Traffic Volume (vph)	126	270	313	279	138
Future Volume (vph)	126	270	313	279	138
Lane Group Flow (vph)	134	287	333	297	231
Turn Type	Perm	NA	NA	Perm	Prot
Protected Phases		4	8		6
Permitted Phases	4			8	
Detector Phase	4	4	8	8	6
Switch Phase					
Minimum Initial (s)	40.0	40.0	40.0	40.0	10.0
Minimum Split (s)	47.4	47.4	47.4	47.4	24.4
Total Split (s)	52.4	52.4	52.4	52.4	32.4
Total Split (%)	61.8%	61.8%	61.8%	61.8%	38.2%
Yellow Time (s)	5.4	5.4	5.4	5.4	5.4
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	7.4	7.4	7.4	7.4	7.4
Lead/Lag					
Lead-Lag Optimize?					
Recall Mode	None	None	None	None	Max
v/c Ratio	0.30	0.35	0.40	0.32	0.44
Control Delay	14.0	13.6	14.2	2.5	21.6
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	14.0	13.6	14.2	2.5	21.6
Queue Length 50th (m)	11.3	24.9	29.7	0.0	23.2
Queue Length 95th (m)	22.9	41.4	48.5	11.1	42.5
Internal Link Dist (m)	22.0	1152.8	1187.2	- 11.1	708.3
Turn Bay Length (m)	75.0	1102.0	1101.2	95.0	, 50.0
Base Capacity (vph)	503	913	937	995	529
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.27	0.31	0.36	0.30	0.44
Intersection Summary	J.=.			3.30	

Cycle Length: 84.8 Actuated Cycle Length: 79.8

	۶	→	←	•	\	4		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations	*	†	†	7	W	-		
Traffic Volume (vph)	126	270	313	279	138	79		
Future Volume (vph)	126	270	313	279	138	79		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	7.4	7.4	7.4	7.4	7.4			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00			
Frt	1.00	1.00	1.00	0.85	0.95			
Flt Protected	0.95	1.00	1.00	1.00	0.97			
Satd. Flow (prot)	1580	1620	1663	1536	1616			
FIt Permitted	0.54	1.00	1.00	1.00	0.97			
Satd. Flow (perm)	893	1620	1663	1536	1616			
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94		
Adj. Flow (vph)	134	287	333	297	147	84		
RTOR Reduction (vph)	0	0	0	148	23	0		
_ane Group Flow (vph)	134	287	333	149	208	0		
Heavy Vehicles (%)	13%	16%	13%	4%	5%	11%		
Turn Type	Perm	NA	NA	Perm	Prot			
Protected Phases		4	8		6			
ermitted Phases	4			8				
ctuated Green, G (s)	40.0	40.0	40.0	40.0	25.0			
ffective Green, g (s)	40.0	40.0	40.0	40.0	25.0			
ctuated g/C Ratio	0.50	0.50	0.50	0.50	0.31			
Clearance Time (s)	7.4	7.4	7.4	7.4	7.4			
ehicle Extension (s)	5.0	5.0	5.0	5.0	4.0			
ane Grp Cap (vph)	447	812	833	769	506			
/s Ratio Prot		0.18	c0.20		c0.13			
/s Ratio Perm	0.15			0.10				
/c Ratio	0.30	0.35	0.40	0.19	0.41			
Jniform Delay, d1	11.7	12.1	12.4	11.0	21.6			
Progression Factor	1.00	1.00	1.00	1.00	1.00			
ncremental Delay, d2	0.8	0.6	0.7	0.3	2.5			
Delay (s)	12.5	12.6	13.1	11.2	24.0			
evel of Service	В	В	В	В	С			
Approach Delay (s)		12.6	12.2		24.0			
Approach LOS		В	В		С			
ntersection Summary								
ICM 2000 Control Delay			14.5	H	CM 2000	Level of Service	В	
HCM 2000 Volume to Capac	city ratio		0.40					
Actuated Cycle Length (s)			79.8		um of lost		14.8	
ntersection Capacity Utilizat	ion		97.6%	IC	U Level c	of Service	F	
Analysis Period (min)			15					
Critical Lane Group								

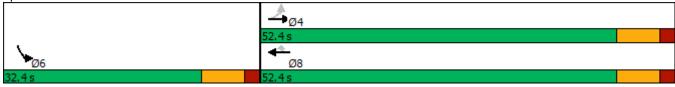
	۶	•	4	†	ļ	4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	¥			ર્ન	₽	
Traffic Volume (veh/h)	6	76	19	104	197	1
Future Volume (Veh/h)	6	76	19	104	197	1
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86
Hourly flow rate (vph)	7	88	22	121	229	1
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	394	230	230			
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	394	230	230			
tC, single (s)	6.8	6.2	4.2			
tC, 2 stage (s)						
tF (s)	3.9	3.3	2.3			
p0 queue free %	99	89	98			
cM capacity (veh/h)	533	810	1265			
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total	95	143	230			
Volume Left	7	22	0			
Volume Right	88	0	1			
cSH	780	1265	1700			
Volume to Capacity	0.12	0.02	0.14			
Queue Length 95th (m)	3.1	0.02	0.14			
Control Delay (s)	10.3	1.3	0.0			
Lane LOS	В	1.5 A	0.0			
Approach Delay (s)	10.3	1.3	0.0			
Approach LOS	10.3 B	1.0	0.0			
	Б					
Intersection Summary						
Average Delay			2.5			
Intersection Capacity Utiliz	zation		32.0%	IC	CU Level c	f Service
Analysis Period (min)			15			

2: CR 25 & Future Collector/Industrial Dr

	۶	→	•	√	+	•	•	†	<i>></i>	\	↓	-√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (veh/h)	0	16	78	3	4	6	34	121	21	35	257	0
Future Volume (Veh/h)	0	16	78	3	4	6	34	121	21	35	257	0
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	17	85	3	4	7	37	132	23	38	279	0
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	582	584	279	666	572	144	279			155		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	582	584	279	666	572	144	279			155		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	100	96	89	99	99	99	97			97		
cM capacity (veh/h)	404	403	765	310	409	909	1295			1438		
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	102	14	192	317								
Volume Left	0	3	37	38								
Volume Right	85	7	23	0								
cSH	665	516	1295	1438								
Volume to Capacity	0.15	0.03	0.03	0.03								
Queue Length 95th (m)	4.1	0.6	0.7	0.6								
Control Delay (s)	11.4	12.2	1.7	1.1								
Lane LOS	В	В	Α	Α								
Approach Delay (s)	11.4	12.2	1.7	1.1								
Approach LOS	В	В										
Intersection Summary												
Average Delay			3.2									
Intersection Capacity Utilizat	tion		30.7%	IC	U Level	of Service			Α			
Analysis Period (min)			15									

	•	-	•	•	-
Lane Group	EBL	EBT	WBT	WBR	SBL
Lane Configurations	ሻ	1	+	7	N/
Traffic Volume (vph)	69	321	188	106	271
Future Volume (vph)	69	321	188	106	271
Lane Group Flow (vph)	73	338	198	112	380
Turn Type	Perm	NA	NA	Perm	Prot
Protected Phases		4	8		6
Permitted Phases	4			8	
Detector Phase	4	4	8	8	6
Switch Phase					
Minimum Initial (s)	40.0	40.0	40.0	40.0	10.0
Minimum Split (s)	47.4	47.4	47.4	47.4	24.4
Total Split (s)	52.4	52.4	52.4	52.4	32.4
Total Split (%)	61.8%	61.8%	61.8%	61.8%	38.2%
Yellow Time (s)	5.4	5.4	5.4	5.4	5.4
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	7.4	7.4	7.4	7.4	7.4
Lead/Lag					
Lead-Lag Optimize?					
Recall Mode	None	None	None	None	Max
v/c Ratio	0.14	0.41	0.27	0.15	0.71
Control Delay	11.7	14.5	12.7	2.8	31.7
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	11.7	14.5	12.7	2.8	31.7
Queue Length 50th (m)	5.6	30.4	16.3	0.0	47.8
Queue Length 95th (m)	12.6	49.5	29.0	7.2	#79.0
Internal Link Dist (m)		1152.8	1187.2		708.3
Turn Bay Length (m)	75.0			95.0	
Base Capacity (vph)	573	921	834	832	533
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.13	0.37	0.24	0.13	0.71

Cycle Length: 84.8


Actuated Cycle Length: 79.8

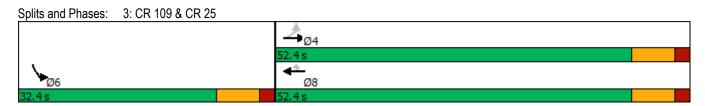
Natural Cycle: 75

Control Type: Semi Act-Uncoord

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

	•	→	←	•	>	✓		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations	*	*		7	¥			
Traffic Volume (vph)	69	321	188	106	271	90		
Future Volume (vph)	69	321	188	106	271	90		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	7.4	7.4	7.4	7.4	7.4			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00			
Frt	1.00	1.00	1.00	0.85	0.97			
Flt Protected	0.95	1.00	1.00	1.00	0.96			
Satd. Flow (prot)	1526	1634	1479	1389	1659			
Flt Permitted	0.63	1.00	1.00	1.00	0.96			
Satd. Flow (perm)	1017	1634	1479	1389	1659			
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95		
Adj. Flow (vph)	73	338	198	112	285	95		
RTOR Reduction (vph)	0	0	0	56	14	0		
Lane Group Flow (vph)	73	338	198	56	366	0		
Heavy Vehicles (%)	17%	15%	27%	15%	1%	19%		
Turn Type	Perm	NA	NA	Perm	Prot			
Protected Phases		4	8		6			
Permitted Phases	4			8				
Actuated Green, G (s)	40.0	40.0	40.0	40.0	25.0			
Effective Green, g (s)	40.0	40.0	40.0	40.0	25.0			
Actuated g/C Ratio	0.50	0.50	0.50	0.50	0.31			
Clearance Time (s)	7.4	7.4	7.4	7.4	7.4			
Vehicle Extension (s)	5.0	5.0	5.0	5.0	4.0			
Lane Grp Cap (vph)	509	819	741	696	519			
v/s Ratio Prot		c0.21	0.13		c0.22			
v/s Ratio Perm	0.07			0.04				
v/c Ratio	0.14	0.41	0.27	80.0	0.71			
Uniform Delay, d1	10.7	12.5	11.5	10.3	24.2			
Progression Factor	1.00	1.00	1.00	1.00	1.00			
Incremental Delay, d2	0.3	0.7	0.4	0.1	7.9			
Delay (s)	11.0	13.2	11.9	10.4	32.0			
Level of Service	В	В	В	В	С			
Approach Delay (s)		12.8	11.4		32.0			
Approach LOS		В	В		С			
Intersection Summary								
HCM 2000 Control Delay			19.0	H	CM 2000	Level of Service	В	
HCM 2000 Volume to Capac	ity ratio		0.52					
Actuated Cycle Length (s)			79.8		um of lost		14.8	
Intersection Capacity Utilizati	on		90.2%	IC	CU Level c	of Service	Е	
Analysis Period (min)			15					
c Critical Lane Group								

	٠	•	1	†		1
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W			ર્ન	ĵ»	
Traffic Volume (veh/h)	1	29	56	283	129	6
Future Volume (Veh/h)	1	29	56	283	129	6
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96
Hourly flow rate (vph)	1	30	58	295	134	6
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)				110110	110110	
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	548	137	140			
vC1, stage 1 conf vol	040	107	170			
vC2, stage 2 conf vol						
vCu, unblocked vol	548	137	140			
tC, single (s)	6.4	6.2	4.1			
tC, 2 stage (s)	VT	0.2	7.1			
tF (s)	3.5	3.3	2.2			
p0 queue free %	100	97	96			
cM capacity (veh/h)	481	917	1437			
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total	31	353	140			
Volume Left	1	58	0			
Volume Right	30	0	6			
cSH	891	1437	1700			
Volume to Capacity	0.03	0.04	0.08			
Queue Length 95th (m)	0.8	1.0	0.0			
Control Delay (s)	9.2	1.6	0.0			
Lane LOS	Α	Α				
Approach Delay (s)	9.2	1.6	0.0			
Approach LOS	Α					
Intersection Summary						
Average Delay			1.6			
Intersection Capacity Utiliz	zation		38.5%	IC	CU Level c	f Service
Analysis Period (min)	Lation		15	10	JO LOVOI C	1 OCI VIOC
Alialysis Fellou (IIIIII)			10			


2: CR 25 & Future Collector/Industrial Dr

	۶	→	•	•	•	•	4	†	/	/	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (veh/h)	0	6	45	20	15	33	89	320	5	9	156	0
Future Volume (Veh/h)	0	6	45	20	15	33	89	320	5	9	156	0
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	7	49	22	16	36	97	348	5	10	170	0
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	778	737	170	787	734	350	170			353		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	778	737	170	787	734	350	170			353		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	100	98	94	92	95	95	93			99		
cM capacity (veh/h)	272	322	879	273	323	697	1420			1217		
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	56	74	450	180								
Volume Left	0	22	97	10								
Volume Right	49	36	5	0								
cSH	723	407	1420	1217								
Volume to Capacity	0.08	0.18	0.07	0.01								
Queue Length 95th (m)	1.9	5.0	1.7	0.2								
Control Delay (s)	10.4	15.8	2.2	0.5								
Lane LOS	В	С	Α	Α								
Approach Delay (s)	10.4	15.8	2.2	0.5								
Approach LOS	В	С										
Intersection Summary												
Average Delay			3.7									
Intersection Capacity Utilization	1		51.4%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									

	٠	-	←	•	-
Lane Group	EBL	EBT	WBT	WBR	SBL
Lane Configurations	ሻ	†	*	7	W
Traffic Volume (vph)	141	301	349	313	168
Future Volume (vph)	141	301	349	313	168
Lane Group Flow (vph)	150	320	371	333	277
Turn Type	Perm	NA	NA	Perm	Prot
Protected Phases		4	8		6
Permitted Phases	4			8	
Detector Phase	4	4	8	8	6
Switch Phase					
Minimum Initial (s)	40.0	40.0	40.0	40.0	10.0
Minimum Split (s)	47.4	47.4	47.4	47.4	24.4
Total Split (s)	52.4	52.4	52.4	52.4	32.4
Total Split (%)	61.8%	61.8%	61.8%	61.8%	38.2%
Yellow Time (s)	5.4	5.4	5.4	5.4	5.4
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	7.4	7.4	7.4	7.4	7.4
Lead/Lag					
Lead-Lag Optimize?					
Recall Mode	None	None	None	None	Max
v/c Ratio	0.36	0.39	0.45	0.36	0.52
Control Delay	15.3	14.2	14.9	2.5	23.9
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	15.3	14.2	14.9	2.5	23.9
Queue Length 50th (m)	13.1	28.5	34.1	0.0	29.8
Queue Length 95th (m)	26.6	46.7	54.9	11.8	52.5
Internal Link Dist (m)		1152.8	1187.2		708.3
Turn Bay Length (m)	75.0			95.0	
Base Capacity (vph)	469	913	937	1011	529
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.32	0.35	0.40	0.33	0.52
Intersection Summary					

Cycle Length: 84.8

Actuated Cycle Length: 79.8

	۶	→	←	•	\	4		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations	*	↑		7	W			
Traffic Volume (vph)	141	301	349	313	168	92		
Future Volume (vph)	141	301	349	313	168	92		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	7.4	7.4	7.4	7.4	7.4			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00			
Frt	1.00	1.00	1.00	0.85	0.95			
Flt Protected	0.95	1.00	1.00	1.00	0.97			
Satd. Flow (prot)	1580	1620	1663	1536	1618			
Flt Permitted	0.50	1.00	1.00	1.00	0.97			
Satd. Flow (perm)	833	1620	1663	1536	1618			
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94		
Adj. Flow (vph)	150	320	371	333	179	98		
RTOR Reduction (vph)	0	0	0	166	23	0		
Lane Group Flow (vph)	150	320	371	167	254	0		
Heavy Vehicles (%)	13%	16%	13%	4%	5%	11%		
Turn Type	Perm	NA	NA	Perm	Prot			
Protected Phases		4	8		6			
Permitted Phases	4			8				
Actuated Green, G (s)	40.0	40.0	40.0	40.0	25.0			
Effective Green, g (s)	40.0	40.0	40.0	40.0	25.0			
Actuated g/C Ratio	0.50	0.50	0.50	0.50	0.31			
Clearance Time (s)	7.4	7.4	7.4	7.4	7.4			
Vehicle Extension (s)	5.0	5.0	5.0	5.0	4.0			
Lane Grp Cap (vph)	417	812	833	769	506			
v/s Ratio Prot		0.20	c0.22		c0.16			
v/s Ratio Perm	0.18			0.11				
v/c Ratio	0.36	0.39	0.45	0.22	0.50			
Uniform Delay, d1	12.1	12.4	12.8	11.1	22.3			
Progression Factor	1.00	1.00	1.00	1.00	1.00			
Incremental Delay, d2	1.1	0.7	8.0	0.3	3.5			
Delay (s)	13.2	13.0	13.6	11.4	25.9			
Level of Service	В	В	В	В	С			
Approach Delay (s)		13.1	12.6		25.9			
Approach LOS		В	В		С			
Intersection Summary								
HCM 2000 Control Delay			15.3	H	CM 2000	Level of Service	В	
HCM 2000 Volume to Capac	city ratio		0.47					
Actuated Cycle Length (s)			79.8		um of lost		14.8	
Intersection Capacity Utilizat	ion		100.1%	IC	U Level c	of Service	G	
Analysis Period (min)			15					
c Critical Lane Group								

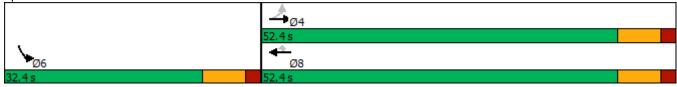
Appendix E – Synchro Analysis Output – Total Traffic Volumes

Annual Republic Configurations The Configurati
Traffic Volume (veh/h) 6 98 23 144 217 1 Stuture Volume (Veh/h) 6 98 23 144 217 1 Sign Control Stop Free Free Strade 0% 0% 0% 0% Steak Hour Factor 0.86 0.86 0.86 0.86 0.86 0.86 Shourly flow rate (vph) 7 114 27 167 252 1 Stedestrians Sane Width (m) Stop Free Free Strade 0% 0% 0% 0% Stop Free Free Strade 0.86 0.86 0.86 0.86 Stop Stop Strade 0.86 Stop Strade 0.86 0.86 Stop Strade 0.86 Stop Strad
Traffic Volume (veh/h) 6 98 23 144 217 1 Truture Volume (Veh/h) 6 98 23 144 217 1 Truture Volume (Veh/h) 6 98 23 144 217 1 Truture Volume (Veh/h) 6 98 23 144 217 1 Truture Volume (Veh/h) 6 98 23 144 217 1 Truture Volume (Veh/h) 6 98 23 144 217 1 Truture Volume (Veh/h) 6 98 23 144 217 1 Truture Volume (Veh/h) 6 98 23 144 217 1 Truture Volume (Veh/h) 6 98 23 144 217 1 Truture Volume (Veh/h) 6 98 23 144 217 1 Truture Volume (Veh/h) 6 98 23 144 217 1 Truture Volume (Veh/h) 6 98 23 144 217 1 Truture Volume (Veh/h) 6 98 23 144 217 1 Truture Volume (Veh/h) 6 98 23 144 217 1 Truture Volume (Veh/h) 7 Truture Volume (Veh/h)
Future Volume (Veh/h) 6 98 23 144 217 1 Figin Control Stop Free Free Free Grade 0% 0% 0% 0% Peak Hour Factor 0.86 0.86 0.86 0.86 0.86 0.86 Flourly flow rate (vph) 7 114 27 167 252 1 Pedestrians Free Free Grade 0% 0% 0% 0% Peak Hour Factor 0.86 0.86 0.86 0.86 0.86 Free Free Grade 0% 0% 0% Free Free Grade 0% 0% Free Free Grade 0% 0% Free Free Grade 0% In the Color of th
Sign Control Stop Free Free Grade 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Grade 0% 0% 0% Peak Hour Factor 0.86
Peak Hour Factor 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86
Tourly flow rate (vph)
Pedestrians ane Width (m) Valking Speed (m/s) Percent Blockage Right turn flare (veh) Median type None None Median storage veh) Upstream signal (m) X, platoon unblocked C, conflicting volume C1, stage 1 conf vol C2, stage 2 conf vol Cu, unblocked vol 474 4252 453
ane Width (m) Valking Speed (m/s) Percent Blockage Right turn flare (veh) Median type Median storage veh) Upstream signal (m) X, platoon unblocked C, conflicting volume C1, stage 1 conf vol C2, stage 2 conf vol Cu, unblocked vol 474 474 474 475 474 475 474 475 474 475 474 475 474 475 474 474 475 476 477 478 478 478 478 478 478
Valking Speed (m/s) Percent Blockage Right turn flare (veh) Median type None Median storage veh) Upstream signal (m) X, platoon unblocked C, conflicting volume 474 252 253 C1, stage 1 conf vol C2, stage 2 conf vol Cu, unblocked vol 474 252 253
Percent Blockage Right turn flare (veh) Median type None Median storage veh) Upstream signal (m) X, platoon unblocked C, conflicting volume 474 252 253 C1, stage 1 conf vol C2, stage 2 conf vol Cu, unblocked vol 474 252 253
Right turn flare (veh) Median type Median storage veh) Upstream signal (m) X, platoon unblocked C, conflicting volume C1, stage 1 conf vol C2, stage 2 conf vol Cu, unblocked vol 474 252 253
Median type None None Median storage veh) Upstream signal (m) X, platoon unblocked C, conflicting volume 474 252 253 C1, stage 1 conf vol C2, stage 2 conf vol Cu, unblocked vol 474 252 253
Median storage veh) Ipstream signal (m) X, platoon unblocked C, conflicting volume 474 252 253 C1, stage 1 conf vol C2, stage 2 conf vol Cu, unblocked vol 474 252 253
Upstream signal (m) X, platoon unblocked C, conflicting volume 474 252 253 C1, stage 1 conf vol C2, stage 2 conf vol Cu, unblocked vol 474 252 253
X, platoon unblocked C, conflicting volume 474 252 253 C1, stage 1 conf vol C2, stage 2 conf vol Cu, unblocked vol 474 252 253
C, conflicting volume 474 252 253 C1, stage 1 conf vol C2, stage 2 conf vol Cu, unblocked vol 474 252 253
C1, stage 1 conf vol C2, stage 2 conf vol Cu, unblocked vol 474 252 253
C2, stage 2 conf vol Cu, unblocked vol 474 252 253
Cu, unblocked vol 474 252 253
•
C, 2 stage (s)
F(s) 3.9 3.3 2.3
0 queue free % 99 85 98
M capacity (veh/h) 476 786 1240
Direction, Lane # EB 1 NB 1 SB 1
Volume Total 121 194 253
/olume Left 7 27 0
/olume Right 114 0 1
SH 758 1240 1700
/olume to Capacity 0.16 0.02 0.15
Queue Length 95th (m) 4.3 0.5 0.0
Control Delay (s) 10.7 1.3 0.0
ane LOS B A
Approach Delay (s) 10.7 1.3 0.0
approach LOS B
ntersection Summary
verage Delay 2.7
ntersection Capacity Utilization 36.7% ICU Level of Service
analysis Period (min) 15

	۶	→	•	√	←	4	•	†	<i>></i>	\	↓	-√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (veh/h)	20	0	44	0	0	2	14	148	0	2	317	7
Future Volume (Veh/h)	20	0	44	0	0	2	14	148	0	2	317	7
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.86	0.92	0.92	0.86	0.92
Hourly flow rate (vph)	22	0	48	0	0	2	15	172	0	2	369	8
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	581	579	373	627	583	172	377			172		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	581	579	373	627	583	172	377			172		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	95	100	93	100	100	100	99			100		
cM capacity (veh/h)	423	423	678	367	421	877	1193			1417		
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	70	2	187	379								
Volume Left	22	0	15	2								
Volume Right	48	2	0	8								
cSH	570	877	1193	1417								
Volume to Capacity	0.12	0.00	0.01	0.00								
Queue Length 95th (m)	3.2	0.1	0.3	0.0								
Control Delay (s)	12.2	9.1	0.8	0.1								
Lane LOS	В	Α	Α	Α								
Approach Delay (s)	12.2	9.1	0.8	0.1								
Approach LOS	В	Α										
Intersection Summary												
Average Delay			1.6									
Intersection Capacity Utiliza	tion		34.9%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									

	•	-	•	•	-
Lane Group	EBL	EBT	WBT	WBR	SBL
Lane Configurations	ሻ	^	1	7	W
Traffic Volume (vph)	62	288	168	93	279
Future Volume (vph)	62	288	168	93	279
Lane Group Flow (vph)	65	303	177	98	390
Turn Type	Perm	NA	NA	Perm	Prot
Protected Phases		4	8		6
Permitted Phases	4			8	
Detector Phase	4	4	8	8	6
Switch Phase					
Minimum Initial (s)	40.0	40.0	40.0	40.0	10.0
Minimum Split (s)	47.4	47.4	47.4	47.4	24.4
Total Split (s)	52.4	52.4	52.4	52.4	32.4
Total Split (%)	61.8%	61.8%	61.8%	61.8%	38.2%
Yellow Time (s)	5.4	5.4	5.4	5.4	5.4
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	7.4	7.4	7.4	7.4	7.4
Lead/Lag					
Lead-Lag Optimize?					
Recall Mode	None	None	None	None	Max
v/c Ratio	0.13	0.37	0.24	0.13	0.73
Control Delay	11.5	13.9	12.4	2.9	32.7
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	11.5	13.9	12.4	2.9	32.7
Queue Length 50th (m)	5.0	26.6	14.4	0.0	49.5
Queue Length 95th (m)	11.5	43.8	26.0	6.7	#83.9
Internal Link Dist (m)		1152.8	1187.2		708.3
Turn Bay Length (m)	75.0			95.0	
Base Capacity (vph)	584	921	834	826	534
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.11	0.33	0.21	0.12	0.73

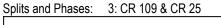
Cycle Length: 84.8

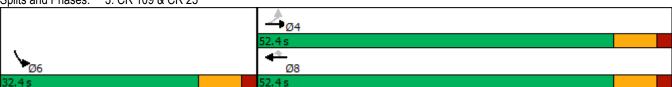

Actuated Cycle Length: 79.8

Natural Cycle: 75

Control Type: Semi Act-Uncoord

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.


	ၨ	→	←	•	\	✓		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations	ች	†	†	7	W			
Traffic Volume (vph)	62	288	168	93	279	91		
Future Volume (vph)	62	288	168	93	279	91		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	7.4	7.4	7.4	7.4	7.4			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00			
Frt	1.00	1.00	1.00	0.85	0.97			
Flt Protected	0.95	1.00	1.00	1.00	0.96			
Satd. Flow (prot)	1526	1634	1479	1389	1660			
FIt Permitted	0.65	1.00	1.00	1.00	0.96			
Satd. Flow (perm)	1037	1634	1479	1389	1660			
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95		
Adj. Flow (vph)	65	303	177	98	294	96		
RTOR Reduction (vph)	0	0	0	49	14	0		
Lane Group Flow (vph)	65	303	177	49	376	0		
Heavy Vehicles (%)	17%	15%	27%	15%	1%	19%		
Turn Type	Perm	NA	NA	Perm	Prot			
Protected Phases	3	4	8		6			
Permitted Phases	4			8				
Actuated Green, G (s)	40.0	40.0	40.0	40.0	25.0			
Effective Green, g (s)	40.0	40.0	40.0	40.0	25.0			
Actuated g/C Ratio	0.50	0.50	0.50	0.50	0.31			
Clearance Time (s)	7.4	7.4	7.4	7.4	7.4			
Vehicle Extension (s)	5.0	5.0	5.0	5.0	4.0			
Lane Grp Cap (vph)	519	819	741	696	520			
v/s Ratio Prot		c0.19	0.12		c0.23			
v/s Ratio Perm	0.06			0.04				
v/c Ratio	0.13	0.37	0.24	0.07	0.72			
Uniform Delay, d1	10.6	12.2	11.3	10.3	24.3			
Progression Factor	1.00	1.00	1.00	1.00	1.00			
Incremental Delay, d2	0.2	0.6	0.4	0.1	8.5			
Delay (s)	10.8	12.8	11.6	10.4	32.8			
Level of Service	В	В	В	В	С			
Approach Delay (s)		12.4	11.2		32.8			
Approach LOS		В	В		С			
Intersection Summary								
HCM 2000 Control Delay			19.8	H	CM 2000	Level of Service	В	
HCM 2000 Volume to Capaci	ty ratio		0.51					
Actuated Cycle Length (s)			79.8		um of lost		14.8	
Intersection Capacity Utilization	on		84.9%	IC	U Level c	of Service	E	
Analysis Period (min)			15					
c Critical Lane Group								


	•	•	•	<u>†</u>	 	4	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	 -
Lane Configurations	¥			4	1>		
Traffic Volume (veh/h)	1	39	71	321	172	6	
Future Volume (Veh/h)	1	39	71	321	172	6	
Sign Control	Stop			Free	Free	•	
Grade	0%			0%	0%		
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	
Hourly flow rate (vph)	1	41	74	334	179	6	
Pedestrians	•						
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type				None	None		
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume	664	182	185				
vC1, stage 1 conf vol	•						
vC2, stage 2 conf vol							
vCu, unblocked vol	664	182	185				
tC, single (s)	6.4	6.2	4.1				
tC, 2 stage (s)	• • • • • • • • • • • • • • • • • • • •	V. <u> </u>					
tF (s)	3.5	3.3	2.2				
p0 queue free %	100	95	95				
cM capacity (veh/h)	406	866	1384				
Direction, Lane #	EB 1	NB 1	SB 1		_	_	
Volume Total							
	42	408	185				
Volume Left	1	74	0				
Volume Right	41	1201	1700				
cSH Volume to Canacity	843	1384	1700				
Volume to Capacity	0.05	0.05	0.11				
Queue Length 95th (m)	1.2	1.3	0.0				
Control Delay (s)	9.5	1.8	0.0				
Lane LOS	Α	A	0.0				
Approach Delay (s)	9.5	1.8	0.0				
Approach LOS	Α						
Intersection Summary			4.0				
Average Delay	· C		1.8		N. I		
Intersection Capacity Utiliz	zation		43.6%	IC	CU Level o	of Service	A
Analysis Period (min)			15				

	4 / 10001	<i>50</i> , 111 G		-						١		
	۶	→	•	•	←	•	4	†	/	\	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (veh/h)	13	0	28	0	0	1	48	386	0	2	192	22
Future Volume (Veh/h)	13	0	28	0	0	1	48	386	0	2	192	22
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	14	0	30	0	0	1	52	420	0	2	209	24
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	750	749	221	779	761	420	233			420		
vC1, stage 1 conf vol		0				120	200			120		
vC2, stage 2 conf vol												
vCu, unblocked vol	750	749	221	779	761	420	233			420		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)	•••	0.0	V. <u>_</u>		0.0	V. <u>L</u>						
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	96	100	96	100	100	100	96			100		
cM capacity (veh/h)	319	329	824	295	324	638	1346			1150		
					021		1010			1100		
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	44	1	472	235								
Volume Left	14	0	52	2								
Volume Right	30	1	0	24								
cSH	548	638	1346	1150								
Volume to Capacity	0.08	0.00	0.04	0.00								
Queue Length 95th (m)	2.0	0.0	0.9	0.0								
Control Delay (s)	12.1	10.7	1.2	0.1								
Lane LOS	В	В	Α	Α								
Approach Delay (s)	12.1	10.7	1.2	0.1								
Approach LOS	В	В										
Intersection Summary												
Average Delay			1.5									
Intersection Capacity Utilizat	ion		53.6%	IC	U Level	of Service			Α			
Analysis Period (min)			15									
,												

	•	-	•	•	-			
Lane Group	EBL	EBT	WBT	WBR	SBL			
Lane Configurations	ሻ	^	†	7	W			
Traffic Volume (vph)	136	270	313	317	160			
Future Volume (vph)	136	270	313	317	160			
Lane Group Flow (vph)	145	287	333	337	260			
Turn Type	Perm	NA	NA	Perm	Prot			
Protected Phases		4	8		6			
Permitted Phases	4			8				
Detector Phase	4	4	8	8	6			
Switch Phase								
Minimum Initial (s)	40.0	40.0	40.0	40.0	10.0			
Minimum Split (s)	47.4	47.4	47.4	47.4	24.4			
Total Split (s)	52.4	52.4	52.4	52.4	32.4			
Total Split (%)	61.8%	61.8%	61.8%	61.8%	38.2%			
Yellow Time (s)	5.4	5.4	5.4	5.4	5.4			
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0			
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0			
Total Lost Time (s)	7.4	7.4	7.4	7.4	7.4			
Lead/Lag								
Lead-Lag Optimize?								
Recall Mode	None	None	None	None	Max			
v/c Ratio	0.32	0.35	0.40	0.36	0.49			
Control Delay	14.4	13.6	14.2	2.5	23.1			
Queue Delay	0.0	0.0	0.0	0.0	0.0			
Total Delay	14.4	13.6	14.2	2.5	23.1			
Queue Length 50th (m)	12.4	24.9	29.7	0.0	27.5			
Queue Length 95th (m)	24.8	41.4	48.5	11.8	48.7			
Internal Link Dist (m)		1152.8	1187.2		708.3			
Turn Bay Length (m)	75.0			95.0				
Base Capacity (vph)	503	913	937	1013	529			
Starvation Cap Reductn	0	0	0	0	0			
Spillback Cap Reductn	0	0	0	0	0			
Storage Cap Reductn	0	0	0	0	0			
Reduced v/c Ratio	0.29	0.31	0.36	0.33	0.49			
Intono action Commence							_	

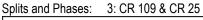
Cycle Length: 84.8 Actuated Cycle Length: 79.8

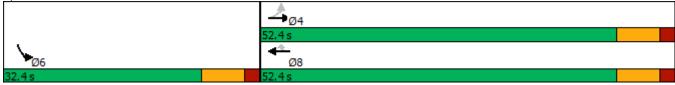
	۶	→	•	•	\	4		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations	*	†	^	7	W	-		
Traffic Volume (vph)	136	270	313	317	160	85		
Future Volume (vph)	136	270	313	317	160	85		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	7.4	7.4	7.4	7.4	7.4			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00			
Frt	1.00	1.00	1.00	0.85	0.95			
Flt Protected	0.95	1.00	1.00	1.00	0.97			
Satd. Flow (prot)	1580	1620	1663	1536	1620			
Flt Permitted	0.54	1.00	1.00	1.00	0.97			
Satd. Flow (perm)	893	1620	1663	1536	1620			
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94		
Adj. Flow (vph)	145	287	333	337	170	90		
RTOR Reduction (vph)	0	0	0	168	22	0		
Lane Group Flow (vph)	145	287	333	169	238	0		
Heavy Vehicles (%)	13%	16%	13%	4%	5%	11%		
Turn Type	Perm	NA	NA	Perm	Prot			
Protected Phases		4	8		6			
Permitted Phases	4			8				
Actuated Green, G (s)	40.0	40.0	40.0	40.0	25.0			
Effective Green, g (s)	40.0	40.0	40.0	40.0	25.0			
Actuated g/C Ratio	0.50	0.50	0.50	0.50	0.31			
Clearance Time (s)	7.4	7.4	7.4	7.4	7.4			
Vehicle Extension (s)	5.0	5.0	5.0	5.0	4.0			
Lane Grp Cap (vph)	447	812	833	769	507			
v/s Ratio Prot		0.18	c0.20		c0.15			
v/s Ratio Perm	0.16			0.11				
v/c Ratio	0.32	0.35	0.40	0.22	0.47			
Uniform Delay, d1	11.9	12.1	12.4	11.2	22.1			
Progression Factor	1.00	1.00	1.00	1.00	1.00			
Incremental Delay, d2	0.9	0.6	0.7	0.3	3.1			
Delay (s)	12.7	12.6	13.1	11.5	25.2			
Level of Service	В	В	В	В	С			
Approach Delay (s)		12.7	12.3		25.2			
Approach LOS		В	В		С			
Intersection Summary								
HCM 2000 Control Delay			14.8	H	CM 2000	Level of Service	В	
HCM 2000 Volume to Capac	city ratio		0.43					
Actuated Cycle Length (s)			79.8		um of lost		14.8	
Intersection Capacity Utilizat	tion		99.2%	IC	U Level c	of Service	F	
Analysis Period (min)			15					
c Critical Lane Group								

	٠	\rightarrow	4	†	ļ	4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W			4	ĵ.	
Traffic Volume (veh/h)	6	76	19	124	204	1
Future Volume (Veh/h)	6	76	19	124	204	1
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86
Hourly flow rate (vph)	7	88	22	144	237	1
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	426	238	238			
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	426	238	238			
tC, single (s)	6.8	6.2	4.2			
tC, 2 stage (s)		V. <u> </u>				
tF (s)	3.9	3.3	2.3			
p0 queue free %	99	89	98			
cM capacity (veh/h)	511	801	1256			
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total	95	166	238			
Volume Left	7	22	0			
Volume Right	88	0	1			
cSH	769	1256	1700			
Volume to Capacity	0.12	0.02	0.14			
Queue Length 95th (m)	3.2	0.4	0.0			
Control Delay (s)	10.3	1.2	0.0			
Lane LOS	В	Α				
Approach Delay (s)	10.3	1.2	0.0			
Approach LOS	В					
Intersection Summary						
Average Delay			2.4			
Intersection Capacity Utiliz	ation		33.4%	IC	CU Level c	f Service
Analysis Period (min)			15			

										,		
	٠	→	•	•	←	•	•	†	/	>	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		7	₽			ĵ₃	
Traffic Volume (veh/h)	20	27	111	3	7	6	45	121	21	35	257	7
Future Volume (Veh/h)	20	27	111	3	7	6	45	121	21	35	257	7
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.86	0.92	0.92	0.86	0.92
Hourly flow rate (vph)	22	29	121	3	8	7	49	141	23	38	299	8
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	629	641	303	761	634	152	307			164		
vC1, stage 1 conf vol		• • • • • • • • • • • • • • • • • • • •										
vC2, stage 2 conf vol												
vCu, unblocked vol	629	641	303	761	634	152	307			164		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)		0.0	0.2		0.0	Ų. <u>L</u>						
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	94	92	84	99	98	99	96			97		
cM capacity (veh/h)	369	370	741	243	374	899	1265			1427		
, , ,							1200		_	1121		
Direction, Lane #	EB 1	WB 1	NB 1	NB 2	SB 1	SB 2						
Volume Total	172	18	49	164	38	307						
Volume Left	22	3	49	0	38	0						
Volume Right	121	7	0	23	0	8						
cSH	571	433	1265	1700	1427	1700						
Volume to Capacity	0.30	0.04	0.04	0.10	0.03	0.18						
Queue Length 95th (m)	9.6	1.0	0.9	0.0	0.6	0.0						
Control Delay (s)	14.0	13.7	8.0	0.0	7.6	0.0						
Lane LOS	В	В	Α		Α							
Approach Delay (s)	14.0	13.7	1.8		8.0							
Approach LOS	В	В										
Intersection Summary												
Average Delay			4.5									
Intersection Capacity Utiliza	ition		38.6%	IC	CU Level of	of Service			Α			
Analysis Period (min)			15									

	•	-	•	•	-
Lane Group	EBL	EBT	WBT	WBR	SBL
Lane Configurations	ሻ	^	†	7	W
Traffic Volume (vph)	72	321	188	114	295
Future Volume (vph)	72	321	188	114	295
Lane Group Flow (vph)	76	338	198	120	415
Turn Type	Perm	NA	NA	Perm	Prot
Protected Phases		4	8		6
Permitted Phases	4			8	
Detector Phase	4	4	8	8	6
Switch Phase					
Minimum Initial (s)	40.0	40.0	40.0	40.0	10.0
Minimum Split (s)	47.4	47.4	47.4	47.4	24.4
Total Split (s)	52.4	52.4	52.4	52.4	32.4
Total Split (%)	61.8%	61.8%	61.8%	61.8%	38.2%
Yellow Time (s)	5.4	5.4	5.4	5.4	5.4
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	7.4	7.4	7.4	7.4	7.4
Lead/Lag					
Lead-Lag Optimize?					
Recall Mode	None	None	None	None	Max
v/c Ratio	0.15	0.41	0.27	0.16	0.78
Control Delay	11.8	14.5	12.7	2.8	35.7
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	11.8	14.5	12.7	2.8	35.7
Queue Length 50th (m)	5.9	30.4	16.3	0.0	54.0
Queue Length 95th (m)	13.0	49.5	29.0	7.5	#97.1
Internal Link Dist (m)		1152.8	1187.2		708.3
Turn Bay Length (m)	75.0			95.0	
Base Capacity (vph)	573	921	834	835	533
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.13	0.37	0.24	0.14	0.78

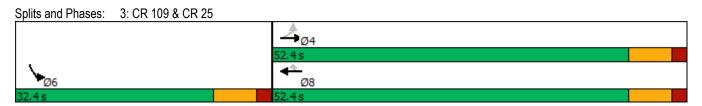

Cycle Length: 84.8


Actuated Cycle Length: 79.8

Natural Cycle: 75

Control Type: Semi Act-Uncoord

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.


	•	→	←	•	>	4		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations	ሻ	†	†	7	W			_
Traffic Volume (vph)	72	321	188	114	295	99		
Future Volume (vph)	72	321	188	114	295	99		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	7.4	7.4	7.4	7.4	7.4			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00			
Frt	1.00	1.00	1.00	0.85	0.97			
FIt Protected	0.95	1.00	1.00	1.00	0.96			
Satd. Flow (prot)	1526	1634	1479	1389	1658			
FIt Permitted	0.63	1.00	1.00	1.00	0.96			
Satd. Flow (perm)	1017	1634	1479	1389	1658			
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95		
Adj. Flow (vph)	76	338	198	120	311	104		
RTOR Reduction (vph)	0	0	0	60	14	0		
Lane Group Flow (vph)	76	338	198	60	401	0		
Heavy Vehicles (%)	17%	15%	27%	15%	1%	19%		
Turn Type	Perm	NA	NA	Perm	Prot			
Protected Phases		4	8		6			
Permitted Phases	4			8				
Actuated Green, G (s)	40.0	40.0	40.0	40.0	25.0			
Effective Green, g (s)	40.0	40.0	40.0	40.0	25.0			
Actuated g/C Ratio	0.50	0.50	0.50	0.50	0.31			
Clearance Time (s)	7.4	7.4	7.4	7.4	7.4			
Vehicle Extension (s)	5.0	5.0	5.0	5.0	4.0			
Lane Grp Cap (vph)	509	819	741	696	519			
//s Ratio Prot		c0.21	0.13		c0.24			
//s Ratio Perm	0.07			0.04				
v/c Ratio	0.15	0.41	0.27	0.09	0.77			
Uniform Delay, d1	10.7	12.5	11.5	10.4	24.8			
Progression Factor	1.00	1.00	1.00	1.00	1.00			
ncremental Delay, d2	0.3	0.7	0.4	0.1	10.7			
Delay (s)	11.0	13.2	11.9	10.5	35.5			
Level of Service	В	В	В	В	D			
Approach Delay (s)		12.8	11.3		35.5			
Approach LOS		В	В		D			
Intersection Summary								
HCM 2000 Control Delay			20.6	Н	CM 2000	Level of Service	С	
HCM 2000 Volume to Capa	city ratio		0.55					
Actuated Cycle Length (s)			79.8		um of lost		14.8	
Intersection Capacity Utiliza	ition		94.6%	IC	CU Level o	of Service	F	
Analysis Period (min)			15					
c Critical Lane Group								

	۶	•	•	†	ļ	1		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	W			ર્ન	ĵ.			
Traffic Volume (veh/h)	1	29	56	296	151	6		
Future Volume (Veh/h)	1	29	56	296	151	6		
Sign Control	Stop			Free	Free			
Grade	0%			0%	0%			
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96		
Hourly flow rate (vph)	1	30	58	308	157	6		
Pedestrians								
Lane Width (m)								
Walking Speed (m/s)								
Percent Blockage								
Right turn flare (veh)								
Median type				None	None			
Median storage veh)								
Upstream signal (m)								
oX, platoon unblocked								
vC, conflicting volume	584	160	163					
vC1, stage 1 conf vol								
vC2, stage 2 conf vol								
Cu, unblocked vol	584	160	163					
C, single (s)	6.4	6.2	4.1					
:C, 2 stage (s)	• • • • • • • • • • • • • • • • • • • •	V. <u>–</u>						
:F (s)	3.5	3.3	2.2					
o0 queue free %	100	97	96					
cM capacity (veh/h)	458	890	1410					
Direction, Lane #	EB 1	NB 1	SB 1	-	_			-
Volume Total	31	366	163					
Volume Left	1	58	0					
Volume Right	30	0	6					
cSH	864	1410	1700					
Volume to Capacity	0.04	0.04	0.10					
Queue Length 95th (m)	0.8	1.0	0.10					
Control Delay (s)	9.3	1.5	0.0					
Lane LOS	9.5 A	Α	0.0					
Approach Delay (s)	9.3	1.5	0.0					
Approach LOS	9.5 A	1.0	0.0					
Intersection Summary								
Average Delay			1.5					
Intersection Capacity Utilization	n		40.3%	IC	CU Level o	f Service	Α	
Analysis Period (min)			15	, ,	. 5 25 75 7	. 55 100	, ,	

	۶	→	•	•	←	4	•	†	<i>></i>	\	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		ň	ĵ,		7	ĵ.	
Traffic Volume (veh/h)	13	13	66	20	26	33	126	320	5	9	156	22
Future Volume (Veh/h)	13	13	66	20	26	33	126	320	5	9	156	22
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	14	14	72	22	28	36	137	348	5	10	170	24
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	874	829	182	894	838	350	194			353		
vC1, stage 1 conf vol	0 , .	020	102		000	000				000		
vC2, stage 2 conf vol												
vCu, unblocked vol	874	829	182	894	838	350	194			353		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)		0.0	0.2	7	0.0	0.2						
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	94	95	92	90	90	95	90			99		
cM capacity (veh/h)	219	276	866	214	272	697	1391			1217		
Direction, Lane #	EB 1	WB 1	NB 1	NB 2	SB 1	SB 2	1001			1217		
·												
Volume Total	100	86	137	353	10	194						
Volume Left	14	22	137	0	10	0						
Volume Right	72	36	0	5	0	24						
cSH	505	334	1391	1700	1217	1700						
Volume to Capacity	0.20	0.26	0.10	0.21	0.01	0.11						
Queue Length 95th (m)	5.5	7.6	2.5	0.0	0.2	0.0						
Control Delay (s)	13.9	19.5	7.9	0.0	8.0	0.0						
Lane LOS	В	С	Α		Α							
Approach Delay (s)	13.9	19.5	2.2		0.4							
Approach LOS	В	С										
Intersection Summary												
Average Delay			4.8									
Intersection Capacity Utiliza	ition		38.1%	IC	U Level of	of Service			Α			
Analysis Period (min)			15									

	•	-	•	•	-	
Lane Group	EBL	EBT	WBT	WBR	SBL	
Lane Configurations	ሻ	1	†	7	W	
Traffic Volume (vph)	151	301	349	340	183	
Future Volume (vph)	151	301	349	340	183	
Lane Group Flow (vph)	161	320	371	362	299	
Turn Type	Perm	NA	NA	Perm	Prot	
Protected Phases		4	8		6	
Permitted Phases	4			8		
Detector Phase	4	4	8	8	6	
Switch Phase						
Minimum Initial (s)	40.0	40.0	40.0	40.0	10.0	
Minimum Split (s)	47.4	47.4	47.4	47.4	24.4	
Total Split (s)	52.4	52.4	52.4	52.4	32.4	
Total Split (%)	61.8%	61.8%	61.8%	61.8%	38.2%	
Yellow Time (s)	5.4	5.4	5.4	5.4	5.4	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	7.4	7.4	7.4	7.4	7.4	
Lead/Lag						
Lead-Lag Optimize?						
Recall Mode	None	None	None	None	Max	
v/c Ratio	0.39	0.39	0.45	0.38	0.57	
Control Delay	15.8	14.2	14.9	2.6	25.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	
Total Delay	15.8	14.2	14.9	2.6	25.2	
Queue Length 50th (m)	14.3	28.5	34.1	0.0	33.3	
Queue Length 95th (m)	28.7	46.7	54.9	12.1	57.4	
Internal Link Dist (m)		1152.8	1187.2		708.3	
Turn Bay Length (m)	75.0			95.0		
Base Capacity (vph)	469	913	937	1024	529	
Starvation Cap Reductn	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	
Reduced v/c Ratio	0.34	0.35	0.40	0.35	0.57	
Intersection Summary						

Cycle Length: 84.8 Actuated Cycle Length: 79.8

	۶	→	←	•	\	4		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations	*	^	†	7	W	-		
Traffic Volume (vph)	151	301	349	340	183	98		
Future Volume (vph)	151	301	349	340	183	98		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	7.4	7.4	7.4	7.4	7.4			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00			
Frt	1.00	1.00	1.00	0.85	0.95			
Flt Protected	0.95	1.00	1.00	1.00	0.97			
Satd. Flow (prot)	1580	1620	1663	1536	1619			
Flt Permitted	0.50	1.00	1.00	1.00	0.97			
Satd. Flow (perm)	833	1620	1663	1536	1619			
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94		
Adj. Flow (vph)	161	320	371	362	195	104		
RTOR Reduction (vph)	0	0	0	181	22	0		
Lane Group Flow (vph)	161	320	371	181	277	0		
Heavy Vehicles (%)	13%	16%	13%	4%	5%	11%		
Turn Type	Perm	NA	NA	Perm	Prot			
Protected Phases		4	8		6			
Permitted Phases	4			8				
Actuated Green, G (s)	40.0	40.0	40.0	40.0	25.0			
Effective Green, g (s)	40.0	40.0	40.0	40.0	25.0			
Actuated g/C Ratio	0.50	0.50	0.50	0.50	0.31			
Clearance Time (s)	7.4	7.4	7.4	7.4	7.4			
Vehicle Extension (s)	5.0	5.0	5.0	5.0	4.0			
Lane Grp Cap (vph)	417	812	833	769	507			
v/s Ratio Prot		0.20	c0.22		c0.17			
v/s Ratio Perm	0.19			0.12				
v/c Ratio	0.39	0.39	0.45	0.24	0.55			
Uniform Delay, d1	12.3	12.4	12.8	11.3	22.7			
Progression Factor	1.00	1.00	1.00	1.00	1.00			
Incremental Delay, d2	1.2	0.7	8.0	0.3	4.2			
Delay (s)	13.5	13.0	13.6	11.6	26.9			
Level of Service	В	В	В	В	С			
Approach Delay (s)		13.2	12.6		26.9			
Approach LOS		В	В		С			
Intersection Summary								
HCM 2000 Control Delay			15.6	H	CM 2000	Level of Service	В	
HCM 2000 Volume to Capac	city ratio		0.48					
Actuated Cycle Length (s)			79.8		um of lost		14.8	
Intersection Capacity Utilizat	tion		101.3%	IC	U Level c	of Service	G	
Analysis Period (min)			15					
c Critical Lane Group								

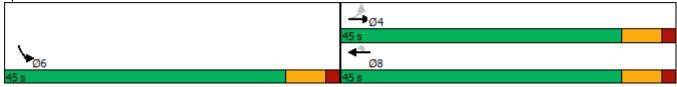
	٠	•	•	†		4	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	¥			4	1>		
Traffic Volume (veh/h)	6	108	25	189	334	1	
Future Volume (Veh/h)	6	108	25	189	334	1	
Sign Control	Stop			Free	Free	•	
Grade	0%			0%	0%		
Peak Hour Factor	0.86	0.86	0.86	0.86	0.86	0.86	
Hourly flow rate (vph)	7	126	29	220	388	1	
Pedestrians						•	
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type				None	None		
Median storage veh)				110110	110110		
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume	666	388	389				
vC1, stage 1 conf vol		000	000				
vC2, stage 2 conf vol							
vCu, unblocked vol	666	388	389				
tC, single (s)	6.8	6.2	4.2				
tC, 2 stage (s)	0.0	V. <u>–</u>					
tF (s)	3.9	3.3	2.3				
p0 queue free %	98	81	97				
cM capacity (veh/h)	361	660	1102				
Direction, Lane #	EB 1	NB 1	SB 1				
Volume Total	133	249	389				
Volume Left	7	29	0				
Volume Right	126	0	1				
cSH	632	1102	1700				
Volume to Capacity	0.21	0.03	0.23				
Queue Length 95th (m)	6.0	0.6	0.0				
Control Delay (s)	12.2	1.2	0.0				
Lane LOS	В	Α					
Approach Delay (s)	12.2	1.2	0.0				
Approach LOS	В						
Intersection Summary							
Average Delay			2.5				
Intersection Capacity Utiliza	tion		44.6%	IC	CU Level o	f Service	
Analysis Period (min)			15				

	۶	→	•	•	•	•	•	†	<i>></i>	\	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		7	1>		ሻ	ĵ₃	
Traffic Volume (veh/h)	30	0	123	3	2	10	50	182	21	50	392	29
Future Volume (Veh/h)	30	0	123	3	2	10	50	182	21	50	392	29
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.86	0.92	0.92	0.86	0.92
Hourly flow rate (vph)	33	0	134	3	2	11	54	212	23	54	456	32
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	912	923	472	1030	928	224	488			235		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	912	923	472	1030	928	224	488			235		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	86	100	78	98	99	99	95			96		
cM capacity (veh/h)	235	248	596	155	246	821	1086			1344		
Direction, Lane #	EB 1	WB 1	NB 1	NB 2	SB 1	SB 2						
Volume Total	167	16	54	235	54	488						
Volume Left	33	3	54	0	54	0						
Volume Right	134	11	0	23	0	32						
cSH	457	391	1086	1700	1344	1700						
Volume to Capacity	0.37	0.04	0.05	0.14	0.04	0.29						
Queue Length 95th (m)	12.6	1.0	1.2	0.0	1.0	0.0						
Control Delay (s)	17.3	14.6	8.5	0.0	7.8	0.0						
Lane LOS	С	В	Α		Α							
Approach Delay (s)	17.3	14.6	1.6		0.8							
Approach LOS	С	В										
Intersection Summary												
Average Delay			4.0									
Intersection Capacity Utilizati	on		48.0%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									

	•	-	•	•	-
Lane Group	EBL	EBT	WBT	WBR	SBL
Lane Configurations	ሻ	^	†	7	W
Traffic Volume (vph)	104	358	209	156	411
Future Volume (vph)	104	358	209	156	411
Lane Group Flow (vph)	109	377	220	164	576
Turn Type	Perm	NA	NA	Perm	Prot
Protected Phases		4	8		6
Permitted Phases	4			8	
Detector Phase	4	4	8	8	6
Switch Phase					
Minimum Initial (s)	37.6	37.6	37.6	37.6	17.6
Minimum Split (s)	45.0	45.0	45.0	45.0	25.0
Total Split (s)	45.0	45.0	45.0	45.0	45.0
Total Split (%)	50.0%	50.0%	50.0%	50.0%	50.0%
Yellow Time (s)	5.4	5.4	5.4	5.4	5.4
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	7.4	7.4	7.4	7.4	7.4
Lead/Lag					
Lead-Lag Optimize?					
Recall Mode	None	None	None	None	Max
v/c Ratio	0.26	0.55	0.36	0.24	0.82
Control Delay	19.3	23.7	20.0	3.8	33.5
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	19.3	23.7	20.0	3.8	33.5
Queue Length 50th (m)	12.0	48.0	25.4	0.0	82.5
Queue Length 95th (m)	23.9	75.0	42.7	10.9	#139.4
Internal Link Dist (m)		1152.8	1187.2		708.3
Turn Bay Length (m)	75.0			95.0	
Base Capacity (vph)	416	682	617	675	706
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.26	0.55	0.36	0.24	0.82

Cycle Length: 90

Actuated Cycle Length: 90


Natural Cycle: 80

Control Type: Semi Act-Uncoord

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	۶	→	•	•	/	4		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations	ሻ	†		7	¥			
Traffic Volume (vph)	104	358	209	156	411	136		
Future Volume (vph)	104	358	209	156	411	136		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	7.4	7.4	7.4	7.4	7.4			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00			
Frt	1.00	1.00	1.00	0.85	0.97			
Flt Protected	0.95	1.00	1.00	1.00	0.96			
Satd. Flow (prot)	1526	1634	1479	1389	1659			
Flt Permitted	0.62	1.00	1.00	1.00	0.96			
Satd. Flow (perm)	997	1634	1479	1389	1659			
Peak-hour factor, PHF	0.95	0.95	0.95	0.95	0.95	0.95		
Adj. Flow (vph)	109	377	220	164	433	143		
RTOR Reduction (vph)	0	0	0	95	13	0		
Lane Group Flow (vph)	109	377	220	69	563	0		
Heavy Vehicles (%)	17%	15%	27%	15%	1%	19%		
Turn Type	Perm	NA	NA	Perm	Prot			
Protected Phases		4	8		6			
Permitted Phases	4			8				
Actuated Green, G (s)	37.6	37.6	37.6	37.6	37.6			
Effective Green, g (s)	37.6	37.6	37.6	37.6	37.6			
Actuated g/C Ratio	0.42	0.42	0.42	0.42	0.42			
Clearance Time (s)	7.4	7.4	7.4	7.4	7.4			
Vehicle Extension (s)	5.0	5.0	5.0	5.0	4.0			
Lane Grp Cap (vph)	416	682	617	580	693			
v/s Ratio Prot		c0.23	0.15		c0.34			
v/s Ratio Perm	0.11			0.05				
v/c Ratio	0.26	0.55	0.36	0.12	0.81			
Uniform Delay, d1	17.1	19.8	17.9	16.0	23.1			
Progression Factor	1.00	1.00	1.00	1.00	1.00			
Incremental Delay, d2	0.7	1.7	0.7	0.2	10.0			
Delay (s)	17.8	21.5	18.7	16.2	33.1			
Level of Service	В	С	В	В	С			
Approach Delay (s)		20.7	17.6		33.1			
Approach LOS		С	В		С			
Intersection Summary								
HCM 2000 Control Delay			24.8	Н	CM 2000	Level of Service	С	
HCM 2000 Volume to Capac	city ratio		0.68					
Actuated Cycle Length (s)			90.0		um of lost		14.8	
Intersection Capacity Utilizati	ion		112.2%	IC	CU Level o	of Service	Н	
Analysis Period (min)			15					
c Critical Lane Group								

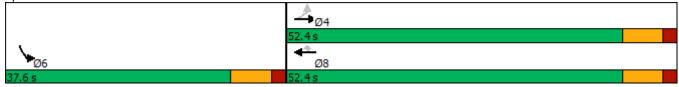
	ၨ	•	1	Ť	↓	4	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	W			ર્ન	f)		
Traffic Volume (veh/h)	1	33	66	467	234	6	
Future Volume (Veh/h)	1	33	66	467	234	6	
Sign Control	Stop			Free	Free		
Grade	0%			0%	0%		
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	
Hourly flow rate (vph)	1	34	69	486	244	6	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type				None	None		
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume	871	247	250				
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	871	247	250				
tC, single (s)	6.4	6.2	4.1				
tC, 2 stage (s)							
tF (s)	3.5	3.3	2.2				
p0 queue free %	100	96	95				
cM capacity (veh/h)	307	797	1310				
Direction, Lane #	EB 1	NB 1	SB 1			_	
Volume Total	35	555	250				
Volume Left	1	69	0				
Volume Right	34	0	6				
cSH	762	1310	1700				
Volume to Capacity	0.05	0.05	0.15				
Queue Length 95th (m)	1.1	1.3	0.0				
Control Delay (s)	10.0	1.5	0.0				
Lane LOS	A	A	0.0				
Approach Delay (s)	10.0	1.5	0.0				
Approach LOS	Α	1.0	0.0				
Intersection Summary							
Average Delay			1.4				
Intersection Capacity Utilization			54.2%	IC	CU Level c	of Service	Α
Analysis Period (min)			15				

	۶	→	•	•	—	•	•	†	<i>></i>	\	↓	-√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			44		7	f)		7	f)	
Traffic Volume (veh/h)	74	20	118	20	36	34	238	447	5	11	216	51
Future Volume (Veh/h)	74	20	118	20	36	34	238	447	5	11	216	51
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	80	22	128	22	39	37	259	486	5	12	235	55
Pedestrians												
Lane Width (m)												
Walking Speed (m/s)												
Percent Blockage												
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	1347	1296	262	1404	1320	488	290			491		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	1347	1296	262	1404	1320	488	290			491		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	0	83	84	70	69	94	80			99		
cM capacity (veh/h)	78	129	781	72	125	583	1283			1083		
Direction, Lane #	EB 1	WB 1	NB 1	NB 2	SB 1	SB 2						
Volume Total	230	98	259	491	12	290						
Volume Left	80	22	259	0	12	0						
Volume Right	128	37	0	5	0	55						
cSH	169	144	1283	1700	1083	1700						
Volume to Capacity	1.36	0.68	0.20	0.29	0.01	0.17						
Queue Length 95th (m)	105.4	29.1	5.7	0.0	0.3	0.0						
Control Delay (s)	248.2	71.2	8.5	0.0	8.4	0.0						
Lane LOS	F	, <u>.</u>	A		A	J.•						
Approach Delay (s)	248.2	71.2	2.9		0.3							
Approach LOS	F	F	,		0.0							
Intersection Summary												
Average Delay			48.1									
Intersection Capacity Utilization	ation		56.7%	IC	CU Level	of Service			В			
Analysis Period (min)			15	,,,	3 23.01							
sijoio i onoa (iiiii)												

	•	-	•	•	-
Lane Group	EBL	EBT	WBT	WBR	SBL
Lane Configurations	ሻ	^	1	7	W
Traffic Volume (vph)	241	335	389	515	267
Future Volume (vph)	241	335	389	515	267
Lane Group Flow (vph)	256	356	414	548	448
Turn Type	Perm	NA	NA	Perm	Prot
Protected Phases		4	8		6
Permitted Phases	4			8	
Detector Phase	4	4	8	8	6
Switch Phase					
Minimum Initial (s)	40.0	40.0	40.0	40.0	10.0
Minimum Split (s)	47.4	47.4	47.4	47.4	24.4
Total Split (s)	52.4	52.4	52.4	52.4	37.6
Total Split (%)	58.2%	58.2%	58.2%	58.2%	41.8%
Yellow Time (s)	5.4	5.4	5.4	5.4	5.4
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	7.4	7.4	7.4	7.4	7.4
Lead/Lag					
Lead-Lag Optimize?					
Recall Mode	None	None	None	None	Max
v/c Ratio	0.72	0.46	0.52	0.54	0.77
Control Delay	31.4	17.2	18.3	3.3	34.0
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	31.4	17.2	18.3	3.3	34.0
Queue Length 50th (m)	32.3	37.5	45.4	0.0	58.2
Queue Length 95th (m)	#70.8	59.1	70.2	15.2	#111.6
Internal Link Dist (m)		1152.8	1187.2		708.3
Turn Bay Length (m)	75.0			95.0	
Base Capacity (vph)	383	839	861	1060	584
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.67	0.42	0.48	0.52	0.77

Cycle Length: 90

Actuated Cycle Length: 86.9


Natural Cycle: 80

Control Type: Semi Act-Uncoord

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

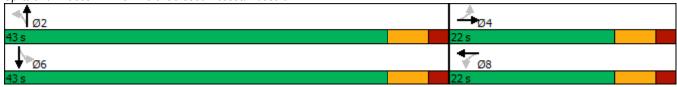
	۶	→	←	•	\	4		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations	*	*	†	7	W			
Traffic Volume (vph)	241	335	389	515	267	154		
Future Volume (vph)	241	335	389	515	267	154		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	7.4	7.4	7.4	7.4	7.4			
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00			
Frt	1.00	1.00	1.00	0.85	0.95			
Flt Protected	0.95	1.00	1.00	1.00	0.97			
Satd. Flow (prot)	1580	1620	1663	1536	1615			
Flt Permitted	0.44	1.00	1.00	1.00	0.97			
Satd. Flow (perm)	740	1620	1663	1536	1615			
Peak-hour factor, PHF	0.94	0.94	0.94	0.94	0.94	0.94		
Adj. Flow (vph)	256	356	414	548	284	164		
RTOR Reduction (vph)	0	0	0	284	23	0		
Lane Group Flow (vph)	256	356	414	264	425	0		
Heavy Vehicles (%)	13%	16%	13%	4%	5%	11%		
Turn Type	Perm	NA	NA	Perm	Prot			
Protected Phases		4	8		6			
Permitted Phases	4			8				
Actuated Green, G (s)	41.9	41.9	41.9	41.9	30.2			
Effective Green, g (s)	41.9	41.9	41.9	41.9	30.2			
Actuated g/C Ratio	0.48	0.48	0.48	0.48	0.35			
Clearance Time (s)	7.4	7.4	7.4	7.4	7.4			
Vehicle Extension (s)	5.0	5.0	5.0	5.0	4.0			
Lane Grp Cap (vph)	356	781	801	740	561			
v/s Ratio Prot		0.22	0.25		c0.26			
v/s Ratio Perm	c0.35			0.17				
v/c Ratio	0.72	0.46	0.52	0.36	0.76			
Uniform Delay, d1	17.8	14.9	15.5	14.1	25.1			
Progression Factor	1.00	1.00	1.00	1.00	1.00			
Incremental Delay, d2	8.4	0.9	1.1	0.6	9.3			
Delay (s)	26.2	15.8	16.6	14.7	34.4			
Level of Service	С	В	В	В	С			
Approach Delay (s)		20.2	15.5		34.4			
Approach LOS		С	В		С			
Intersection Summary								
HCM 2000 Control Delay			21.1	Н	CM 2000	Level of Service	С	
HCM 2000 Volume to Capa	city ratio		0.73					
Actuated Cycle Length (s)			86.9		um of lost		14.8	
Intersection Capacity Utiliza	tion		109.4%	IC	CU Level o	of Service	Н	
Analysis Period (min)			15					
c Critical Lane Group								

Appendix F – Synchro Analysis Output – Total Traffic Volumes with Improvements

2: CR 25 & Corseed Access/Industrial Dr

	•	-	•	←	1	†	-	ţ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations		- ↔		4	7	1≽	ሻ	₽	
Traffic Volume (vph)	30	32	3	11	64	158	35	336	
Future Volume (vph)	30	32	3	11	64	158	35	336	
Lane Group Flow (vph)	0	239	0	23	70	207	38	421	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	
Protected Phases		4		8		2		6	
Permitted Phases	4		8		2		6		
Detector Phase	4	4	8	8	2	2	6	6	
Switch Phase									
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
Minimum Split (s)	22.0	22.0	22.0	22.0	22.0	22.0	22.0	22.0	
Total Split (s)	22.0	22.0	22.0	22.0	43.0	43.0	43.0	43.0	
Total Split (%)	33.8%	33.8%	33.8%	33.8%	66.2%	66.2%	66.2%	66.2%	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)		0.0		0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)		6.0		6.0	6.0	6.0	6.0	6.0	
Lead/Lag									
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	Max	Max	Max	Max	
v/c Ratio		0.63		0.09	0.11	0.17	0.05	0.34	
Control Delay		15.5		17.0	5.5	4.8	5.0	6.2	
Queue Delay		0.0		0.0	0.0	0.0	0.0	0.0	
Total Delay		15.5		17.0	5.5	4.8	5.0	6.2	
Queue Length 50th (m)		6.5		1.4	2.2	6.3	1.2	15.7	
Queue Length 95th (m)		23.2		6.3	8.1	16.3	4.9	35.7	
Internal Link Dist (m)		413.4		408.0		194.7		271.4	
Turn Bay Length (m)					65.0		55.0		
Base Capacity (vph)		551		440	630	1216	773	1221	
Starvation Cap Reductn		0		0	0	0	0	0	
Spillback Cap Reductn		0		0	0	0	0	0	
Storage Cap Reductn		0		0	0	0	0	0	
Reduced v/c Ratio		0.43		0.05	0.11	0.17	0.05	0.34	

Intersection Summary


Cycle Length: 65

Actuated Cycle Length: 60.6

Natural Cycle: 45

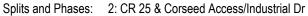
Control Type: Semi Act-Uncoord

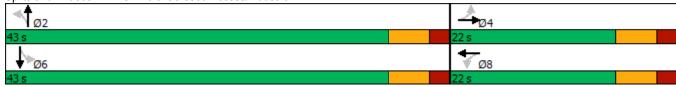
Splits and Phases: 2: CR 25 & Corseed Access/Industrial Dr

	۶	→	•	•	—	•	•	†	~	\	↓	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		7	₽		ሻ	₽	
Traffic Volume (vph)	30	32	157	3	11	7	64	158	21	35	336	28
Future Volume (vph)	30	32	157	3	11	7	64	158	21	35	336	28
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.0			6.0		6.0	6.0		6.0	6.0	
Lane Util. Factor		1.00			1.00		1.00	1.00		1.00	1.00	
Frt		0.90			0.95		1.00	0.98		1.00	0.99	
Flt Protected		0.99			0.99		0.95	1.00		0.95	1.00	
Satd. Flow (prot)		1686			1779		1785	1848		1785	1859	
FIt Permitted		0.95			0.91		0.51	1.00		0.63	1.00	
Satd. Flow (perm)		1607			1638		962	1848		1180	1859	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.86	0.92	0.92	0.86	0.92
Adj. Flow (vph)	33	35	171	3	12	8	70	184	23	38	391	30
RTOR Reduction (vph)	0	146	0	0	7	0	0	6	0	0	3	0
Lane Group Flow (vph)	0	93	0	0	16	0	70	201	0	38	418	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Actuated Green, G (s)		8.8			8.8		39.7	39.7		39.7	39.7	
Effective Green, g (s)		8.8			8.8		39.7	39.7		39.7	39.7	
Actuated g/C Ratio		0.15			0.15		0.66	0.66		0.66	0.66	
Clearance Time (s)		6.0			6.0		6.0	6.0		6.0	6.0	
Vehicle Extension (s)		3.0			3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)		233			238		631	1212		774	1219	
v/s Ratio Prot								0.11			c0.22	
v/s Ratio Perm		c0.06			0.01		0.07	0.11		0.03	00.22	
v/c Ratio		0.40			0.07		0.11	0.17		0.05	0.34	
Uniform Delay, d1		23.4			22.3		3.9	4.0		3.7	4.6	
Progression Factor		1.00			1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2		1.1			0.1		0.4	0.3		0.1	0.8	
Delay (s)		24.6			22.4		4.2	4.3		3.8	5.4	
Level of Service		C			C		Α	Α		A	Α	
Approach Delay (s)		24.6			22.4			4.3			5.3	
Approach LOS		С			С			Α			А	
Intersection Summary												
HCM 2000 Control Delay			10.0	H	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capac	ity ratio		0.35									
Actuated Cycle Length (s)			60.5	Sı	um of lost	time (s)			12.0			
Intersection Capacity Utilizat	ion		55.1%			of Service			В			
Analysis Period (min)			15									
c Critical Lane Group												

2: CR 25 & Corseed Access/Industrial Dr

	•	→	•	←	1	†	>	ļ	
Lane Group	EBL	EBT	WBL	WBT	NBL	NBT	SBL	SBT	
Lane Configurations		4		4	ሻ	f)	ሻ	₽	
Traffic Volume (vph)	74	20	20	36	238	447	11	216	
Future Volume (vph)	74	20	20	36	238	447	11	216	
Lane Group Flow (vph)	0	230	0	98	259	491	12	290	
Turn Type	Perm	NA	Perm	NA	Perm	NA	Perm	NA	
Protected Phases		4		8		2		6	
Permitted Phases	4		8		2		6		
Detector Phase	4	4	8	8	2	2	6	6	
Switch Phase									
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
Minimum Split (s)	22.0	22.0	22.0	22.0	22.0	22.0	22.0	22.0	
Total Split (s)	22.0	22.0	22.0	22.0	43.0	43.0	43.0	43.0	
Total Split (%)	33.8%	33.8%	33.8%	33.8%	66.2%	66.2%	66.2%	66.2%	
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)		0.0		0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)		6.0		6.0	6.0	6.0	6.0	6.0	
Lead/Lag									
Lead-Lag Optimize?									
Recall Mode	None	None	None	None	Max	Max	Max	Max	
v/c Ratio		0.68		0.32	0.37	0.41	0.02	0.25	
Control Delay		24.4		17.0	8.6	7.9	5.9	5.9	
Queue Delay		0.0		0.0	0.0	0.0	0.0	0.0	
Total Delay		24.4		17.0	8.6	7.9	5.9	5.9	
Queue Length 50th (m)		13.8		5.8	12.3	24.2	0.4	11.0	
Queue Length 95th (m)		32.8		16.2	30.4	50.3	2.4	25.2	
Internal Link Dist (m)		413.4		408.0		194.7		271.4	
Turn Bay Length (m)					65.0		55.0		
Base Capacity (vph)		444		420	691	1185	536	1165	
Starvation Cap Reductn		0		0	0	0	0	0	
Spillback Cap Reductn		0		0	0	0	0	0	
Storage Cap Reductn		0		0	0	0	0	0	
Reduced v/c Ratio		0.52		0.23	0.37	0.41	0.02	0.25	

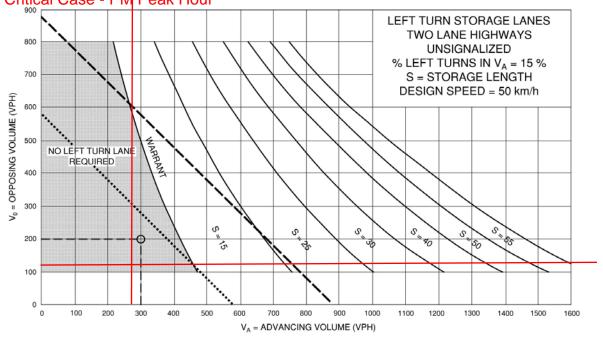

Intersection Summary


Cycle Length: 65

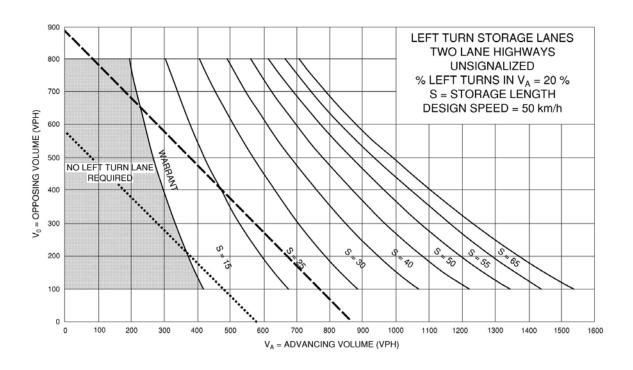
Actuated Cycle Length: 63

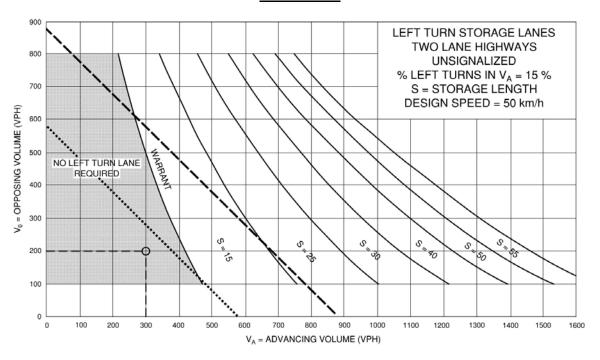
Natural Cycle: 45

Control Type: Semi Act-Uncoord


	•	→	•	•	•	•	4	†	~	\	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		ň	ĵ»		¥	ĵ»	
Traffic Volume (vph)	74	20	118	20	36	34	238	447	5	11	216	51
Future Volume (vph)	74	20	118	20	36	34	238	447	5	11	216	51
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.0			6.0		6.0	6.0		6.0	6.0	
Lane Util. Factor		1.00			1.00		1.00	1.00		1.00	1.00	
Frt		0.92			0.95		1.00	1.00		1.00	0.97	
Flt Protected		0.98			0.99		0.95	1.00		0.95	1.00	
Satd. Flow (prot)		1708			1763		1785	1876		1785	1825	
Flt Permitted		0.85			0.86		0.58	1.00		0.45	1.00	
Satd. Flow (perm)		1475			1539		1094	1876		849	1825	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	80	22	128	22	39	37	259	486	5	12	235	55
RTOR Reduction (vph)	0	76	0	0	30	0	0	0	0	0	11	0
Lane Group Flow (vph)	0	154	0	0	68	0	259	491	0	12	279	0
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Turn Type	Perm	NA	070	Perm	NA	0,0	Perm	NA	0,0	Perm	NA	070
Protected Phases	1 01111	4		1 01111	8		1 01111	2		1 01111	6	
Permitted Phases	4	-		8	U		2			6	U	
Actuated Green, G (s)	7	11.1		Ū	11.1		39.8	39.8		39.8	39.8	
Effective Green, g (s)		11.1			11.1		39.8	39.8		39.8	39.8	
Actuated g/C Ratio		0.18			0.18		0.63	0.63		0.63	0.63	
Clearance Time (s)		6.0			6.0		6.0	6.0		6.0	6.0	
Vehicle Extension (s)		3.0			3.0		3.0	3.0		3.0	3.0	
Lane Grp Cap (vph)		260			271		692	1187		537	1154	
v/s Ratio Prot		200			211		092	c0.26		331	0.15	
v/s Ratio Perm		c0.10			0.04		0.24	60.20		0.01	0.10	
v/c Ratio		0.59			0.04		0.24	0.41		0.01	0.24	
Uniform Delay, d1		23.8			22.3		5.6	5.7		4.3	5.0	
Progression Factor		1.00			1.00		1.00	1.00		1.00	1.00	
Incremental Delay, d2		3.6			0.5		1.5	1.1		0.1	0.5	
Delay (s)		27.4			22.8		7.1	6.8		4.4	5.5	
Level of Service		27.4 C			22.0 C		Α	Α		4.4 A	3.5 A	
Approach Delay (s)		27.4			22.8			6.9			5.5	
Approach LOS		27.4 C			22.0 C			0.9 A			3.5 A	
Intersection Summary												
HCM 2000 Control Delay			11.1	H	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capaci	ty ratio		0.45									
Actuated Cycle Length (s)	,		62.9	Sı	um of lost	time (s)			12.0			
Intersection Capacity Utilizati	on		61.7%		U Level o				В			
Analysis Period (min)			15									
c Critical Lane Group			-									

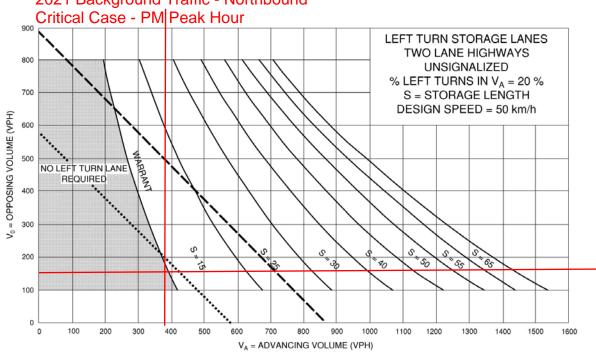
Appendix G – MTO DS Left Turn Lane Warrant Graphs

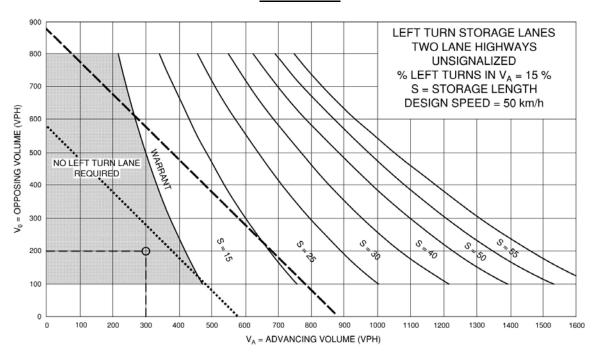

Melody Lane / County Road 25


2016 Existing Traffic - Northbound Exhibit 9A-3
Critical Case - PM Peak Hour

TRAFFIC SIGNALS MAY BE WARRANTED IN RURAL
AREAS OR URBAN AREAS WITH RESTRICTED FLOW

TRAFFIC SIGNALS MAY BE WARRANTED IN "FREE FLOW" URBAN AREAS

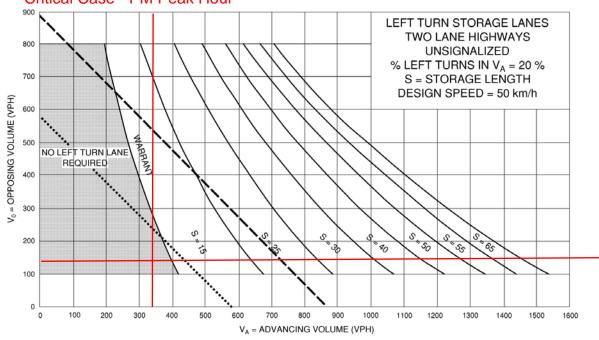


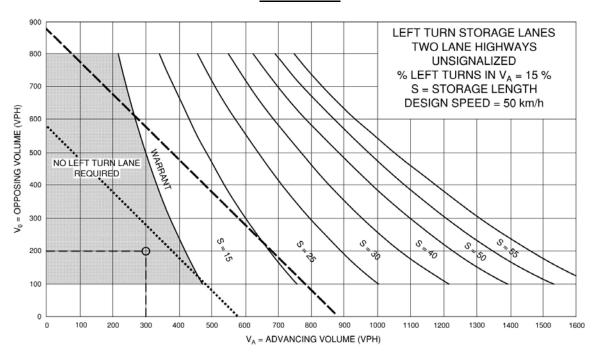

TRAFFIC SIGNALS MAY BE WARRANTED IN RURAL
AREAS OR URBAN AREAS WITH RESTRICTED FLOW

TRAFFIC SIGNALS MAY BE WARRANTED IN "FREE FLOW" URBAN AREAS

Melody Lane / County Road 25

2021 Background Traffic - Northbound

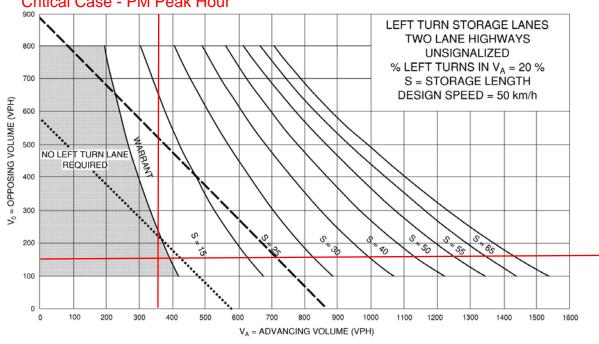

TRAFFIC SIGNALS MAY BE WARRANTED IN RURAL AREAS OR URBAN AREAS WITH RESTRICTED FLOW


TRAFFIC SIGNALS MAY BE WARRANTED IN

Melody Lane / County Road 25

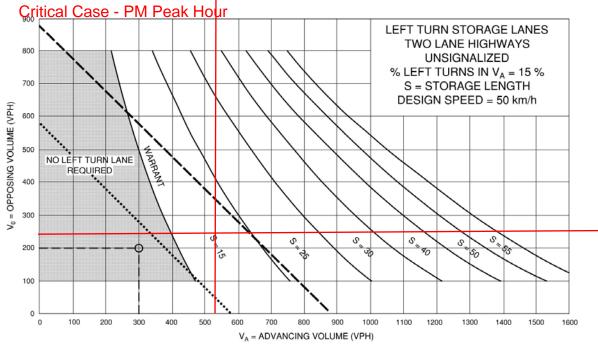
2026 Background Traffic - Northbound

Critical Case - PM Peak Hour

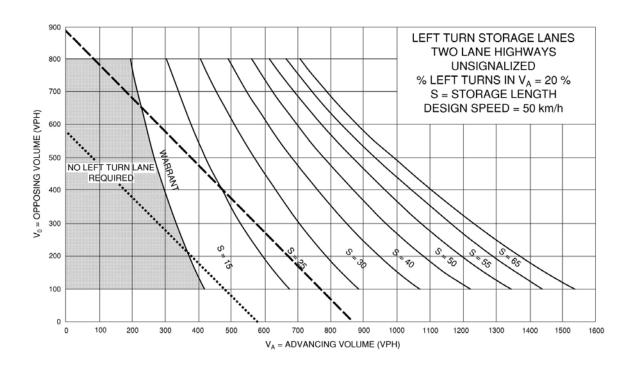

TRAFFIC SIGNALS MAY BE WARRANTED IN RURAL AREAS OR URBAN AREAS WITH RESTRICTED FLOW

TRAFFIC SIGNALS MAY BE WARRANTED IN

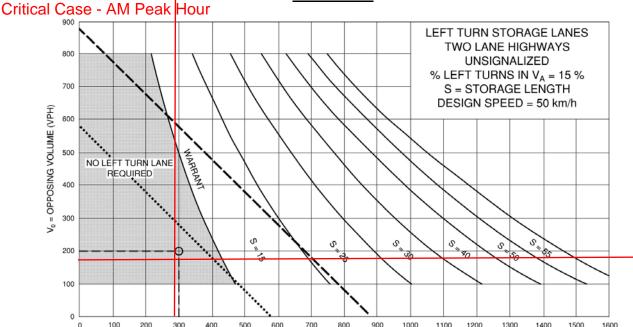
Melody Lane / County Road 25


2026 Total Traffic - Northbound

Critical Case - PM Peak Hour

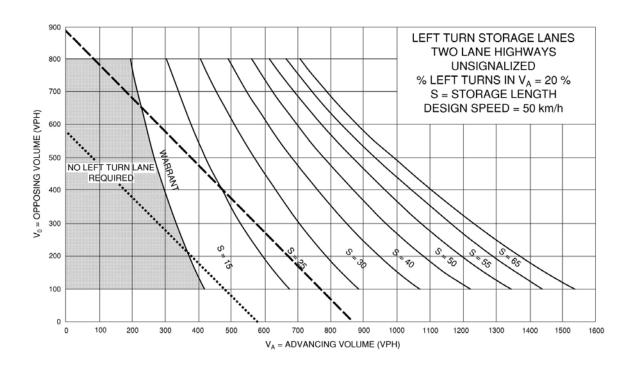

Melody Lane / County Road 25

2031 Total Traffic - Northbound Exhibit 9A-3

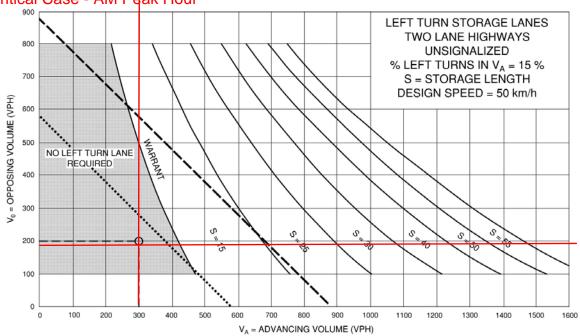

TRAFFIC SIGNALS MAY BE WARRANTED IN RURAL
AREAS OR URBAN AREAS WITH RESTRICTED FLOW

TRAFFIC SIGNALS MAY BE WARRANTED IN "FREE FLOW" URBAN AREAS

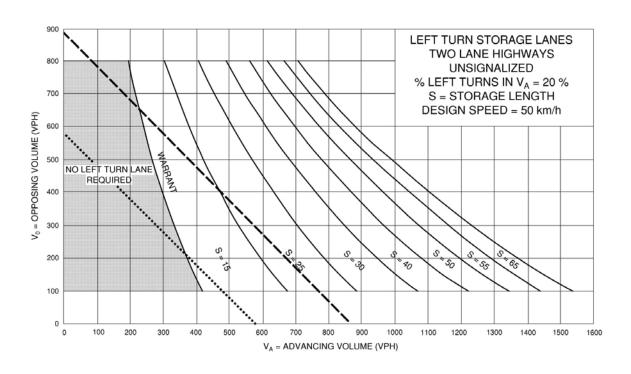
TAC Geometric Design Guide for Canadian Roads, June 2017 Future Collector & Industrial Drive / County Road 25

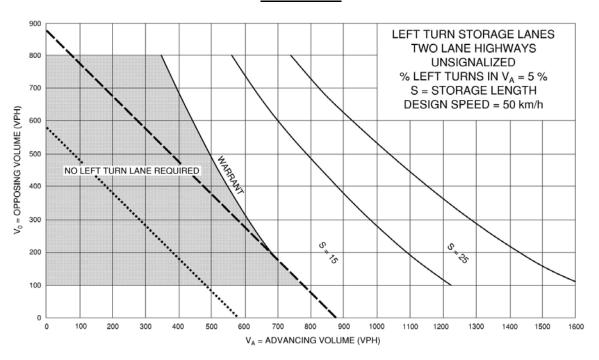

2026 Background Traffic - Southbound Exhibit 9A-3

V_A = ADVANCING VOLUME (VPH)


TRAFFIC SIGNALS MAY BE WARRANTED IN RURAL AREAS OR URBAN AREAS WITH RESTRICTED FLOW

TRAFFIC SIGNALS MAY BE WARRANTED IN "FREE FLOW" URBAN AREAS


TAC Geometric Design Guide for Canadian Roads, June 2017
Corseed Access & Industrial Drive / County Road 25



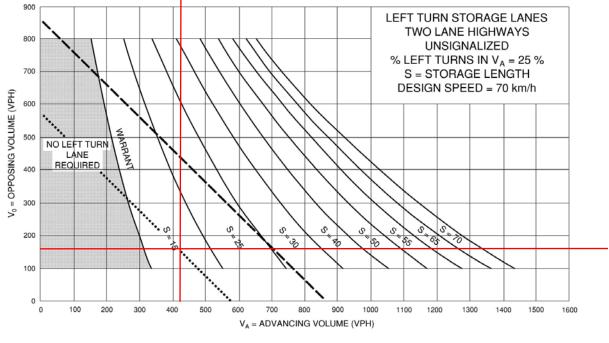
TRAFFIC SIGNALS MAY BE WARRANTED IN RURAL AREAS OR URBAN AREAS WITH RESTRICTED FLOW

TRAFFIC SIGNALS MAY BE WARRANTED IN "FREE FLOW" URBAN AREAS

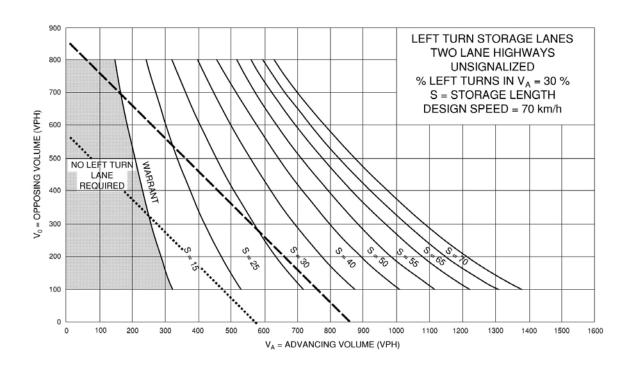
TRAFFIC SIGNALS MAY BE WARRANTED IN RURAL AREAS OR URBAN AREAS WITH RESTRICTED FLOW

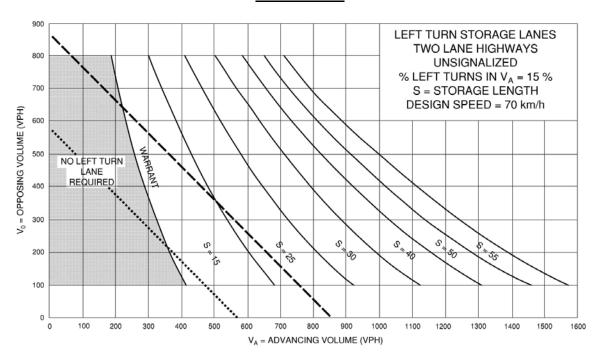
TRAFFIC SIGNALS MAY BE WARRANTED IN

Corseed Access & Industrial Drive / County Road 25


2031 Total Traffic - Southbound

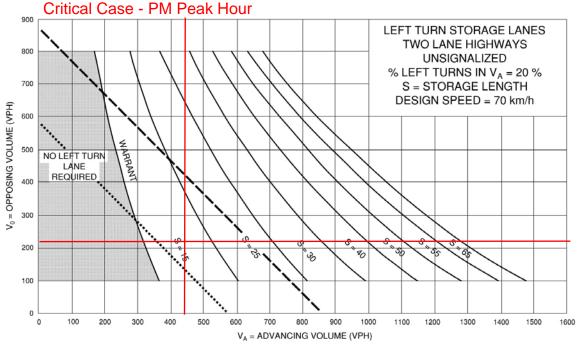
Future Collector & Industrial Drive / County Road 25

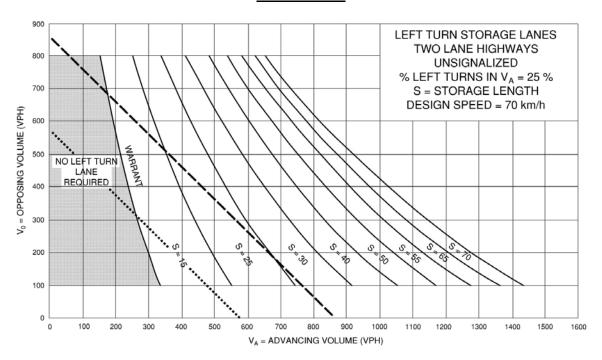

2026 Background Traffic - Northboun@xhibit 9A-12


Critical Case - PM Peak Hour

TRAFFIC SIGNALS MAY BE WARRANTED IN RURAL
AREAS OR URBAN AREAS WITH RESTRICTED FLOW

TRAFFIC SIGNALS MAY BE WARRANTED IN
"FREE FLOW" URBAN AREAS

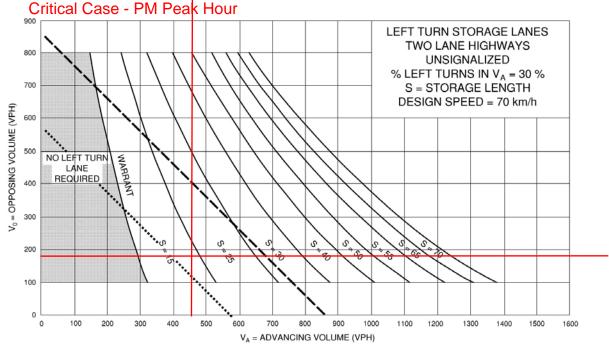



TRAFFIC SIGNALS MAY BE WARRANTED IN RURAL
AREAS OR URBAN AREAS WITH RESTRICTED FLOW

TRAFFIC SIGNALS MAY BE WARRANTED IN "FREE FLOW" URBAN AREAS

Corseed Access & Industrial Drive / County Road 25

2021 Total Traffic - Northbound



TRAFFIC SIGNALS MAY BE WARRANTED IN RURAL
AREAS OR URBAN AREAS WITH RESTRICTED FLOW

TRAFFIC SIGNALS MAY BE WARRANTED IN

Corseed Access & Industrial Drive / County Road 25

2026 Total Traffic - Northbound

Appendix H – OTM Book 12 – Traffic Signal Justification Sheets

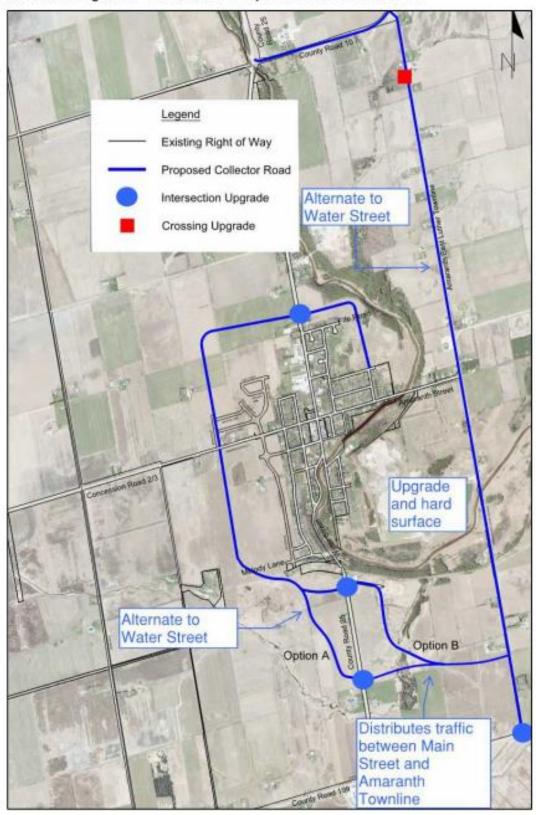
Justification No. 7 - 2031 Total Traffic

Melody Lane / CR 25

			(Compliance)	Signal	Underground
Justification	Description		Sectional		Entire %	Warrant	Provisions
		Rest. Flow	Numerical %		Ellille 70	vvairani	Warrant
	A. Vehicle volume, all aproaches						
Minimum Vehicluar	(average hour)	720	343	48%	8%	NO	NO
Volume	B. Vehicle volume, along minor streets				0 70		
	(average hour)	255	31	12%		NO	NO
	A. Vehicle volume, major street						
	(average hour)	720	310	43%		NO	NO
Delay to cross traffic	B. Combined vehicle and pedestrian				2%		
-	volume crossing artery from minor						
	streets (average hour)	75	2	2%		NO	NO

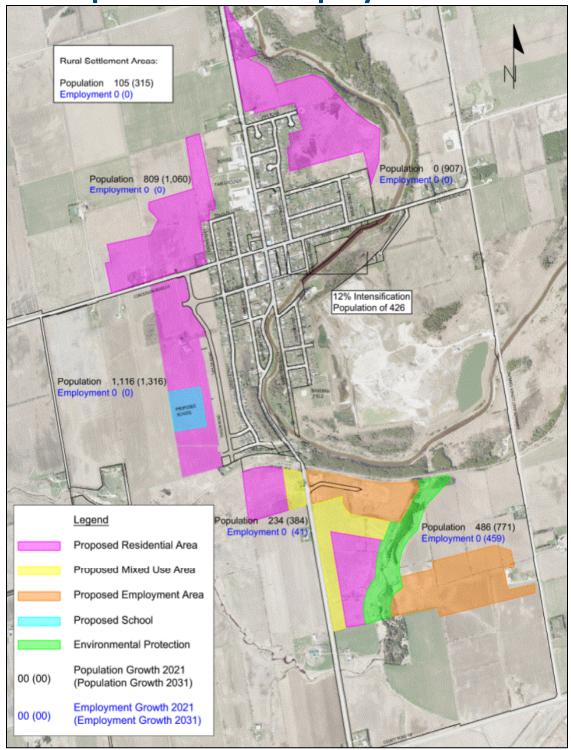
Justification No. 7 - 2031 Total Traffic

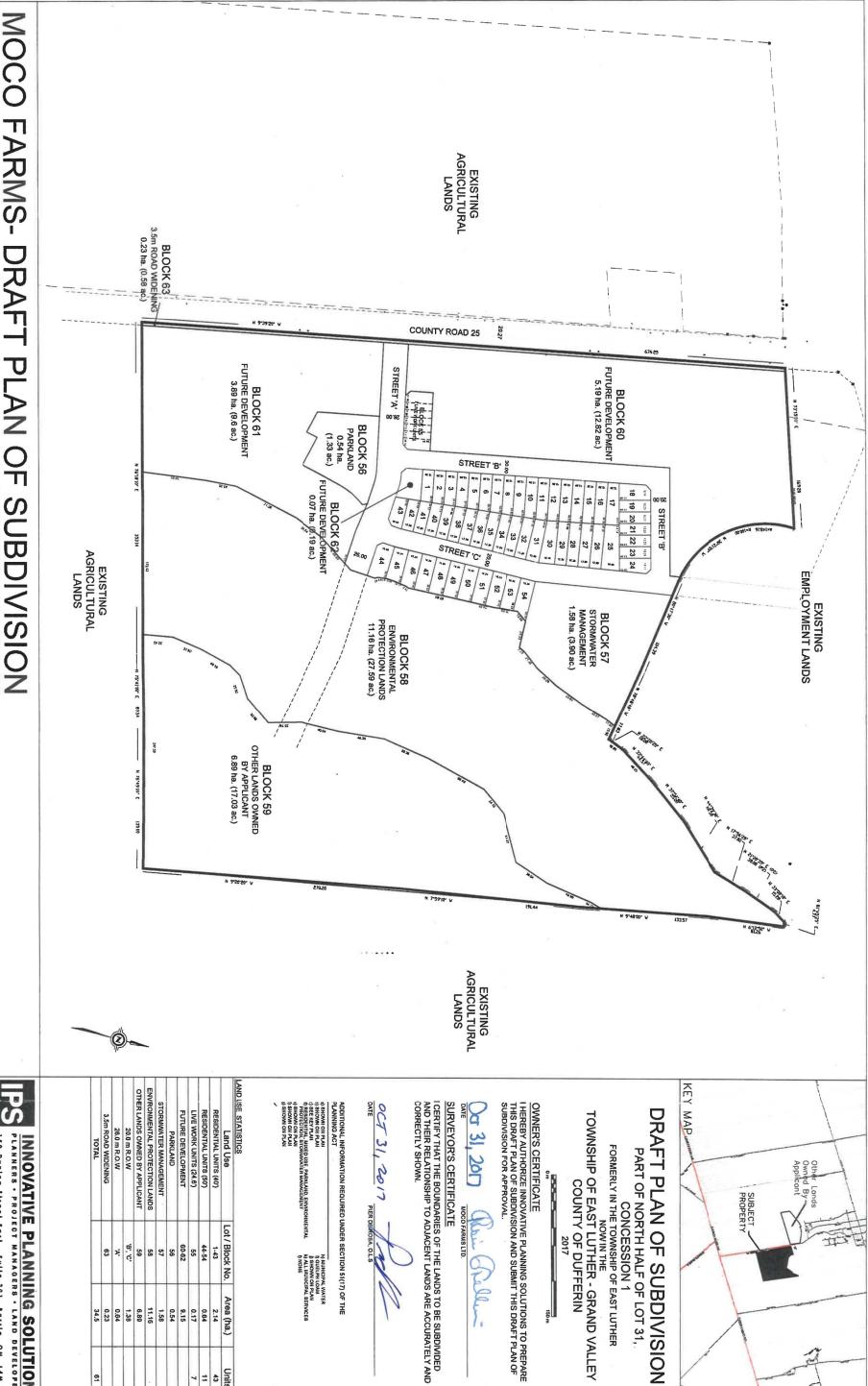
Corseed Access & Industrial Drive / CR 25


			(Compliance)	Signal	Underground
Justification	Description		Secti	onal	Entire %	Warrant	Provisions
		Rest. Flow	Numerical %		Littlic 70	warrant	Warrant
	A. Vehicle volume, all aproaches						
1. Minimum Vehicluar	(average hour)	720	538	75%	50%	NO	NO
Volume	B. Vehicle volume, along minor streets				50%		
	(average hour)	170	136	80%		NO	NO
	A. Vehicle volume, major street						
	(average hour)	720	376	52%		NO	NO
2. Delay to cross traffic	B. Combined vehicle and pedestrian				35%		
	volume crossing artery from minor						
	streets (average hour)	75	45	60%		NO	NO

Appendix I – Grand Valley TMP Excerpts

Town of Grand Valley Transportation Master Plan Study March 2017


Executive Figure 2: Preferred Transportation Road Network



Future Population and Employment Distribution

Appendix J – Moco Subdivision Draft Plan

Party Comment

語

TOWN OF GRAND VALLEY

FILE NAME: 10-301 MOCO - 010815.dwg
PROJECT: 10-301 CORTEL GRAND VALLEY 150 Duniop Street East , Suite 201, Barrie, ON 14M 181 P: 705 * 812 * 3281 F: 705 * 812 * 3438 www.ipsconsullinginc.com DATE: OCTOBER 31, 2017 DRAWN BY: V.L.

PLANNERS - PROJECT MANAGERS - LAND DEVELOPERS

Lot / Block No.

Area (ha.)

Units 43

44-54 55 60-62 56 57 58 59 59 'B', 'C'

0.64 0.17 9.15 9.15 1.58 11.16 6.89 1.38 0.23

Appendix L – 2016 TIS Excerpts

Corseed & Moco Residential Subdivision

Town of Grand Valley County of Dufferin

Traffic Impact Study for Moco Farms Ltd., Corseed Inc.

Type of Document: Final Report

Project Number: JDE – 1417

Date Submitted: July 22nd, 2015

Date Revised December 21st, 2016

John Northcote, P.Eng.

Professional License #: 100124071

JD Northcote Engineering Inc. 86 Cumberland Street Barrie, ON 705.725.4035

www.JDEngineering.ca

The results of the LOS analysis indicate that the study area intersections are operating at a good LOS for all turning movements.

For right turn movements, the criteria outlined in Section E.7 of the MTO GDSOH were applied. Based on the above-noted criteria, right turn lanes are not warranted at all study area intersections.

An analysis was completed for left turn movements at all unsignalized intersections within the study area. Based on the criteria outlined in Section E.B.1 of the MTO GDSOH, a northbound left turn lane is warranted on County Road 25 at Melody Lane with a 15 meter storage length; however, based on our discussions with the Town, widening the road at this intersection is not feasible. Consequently, for the purpose of this analysis, it is assumed that a northbound left turn lane will not be constructed on County Road 25 at Melody Lane. A northbound left turn lane on County Road 25 at the Future Collector is warranted with a 15 meter storage length. MTO GDSOH left turn warrant graphs are provided in **Appendix G**.

Based on the Ontario Traffic Manual Book 12 *Signal Justification*, traffic signals are not warranted at the intersection of Melody Lane / County Road 25 or Future Collector / County Road 25 (results are provided in **Appendix H**).

No additional improvements are required at the existing intersections.

4 Proposed Development Traffic Generation and Assignment

4.1 Traffic Generation

As noted in Section 1.4, development plans for the mixed-use blocks for the Moco Subdivision and Corseed Subdivision have not been finalized at this time. It is anticipated that development of the mixed-use blocks will not commence within 10 years of the current proposed development. Based on our correspondence with the Town and County, although the development of the mixed-use blocks are not anticipated to develop in the short term, a longer-term preliminary review of the anticipated mixed-use development for the year 2031 is required.

A conceptual plan showing a potential configuration of the future mixed-use block in the Moco Subdivision was prepared by IPS Consulting Inc. for the purpose of this analysis (attached in **Appendix A**). A similar conceptual development plan for the mixed-use block in the Corseed Subdivision is not available, consequently, for the purpose of this report, we have assumed that the traffic generated by the Corseed Subdivision would be proportionate to the ratio of the mixed-use developable areas within the Moco and Corseed Subdivisions.

The traffic generation for the Corseed and Moco Subdivisions has been based on the ITE *Trip Generation* data. The following ITE land uses have been applied to estimate the traffic from the proposed development:

- ITE land use 210 (Single-Family Detached Housing)
- ITE land use 230 (Residential Condominium / Townhouse)
- ITE land use 820 (Shopping Center)

The estimated trip generation of the proposed development is illustrated below in **Table 9** and **10**. The AM and PM peak traffic generation for the subject site generally aligns with the AM and PM peak hour in the traffic counts.

Phase	Land Use	Size	Al	M Peak Ho	our	PM Peak Hour			
Filase	Land OSe	Size	IN	OUT	TOTAL	IN	OUT	TOTAL	
1	Single-Family Detached Housing ITE Land Use: 210	108 units	22	65	86	71	42	113	
	Residential Condominium/Townhouse ITE Land Use: 230	79 units	7	36	43	34	17	50	
2	Shopping Center ITE Land Use:820	8,177 sq.m. 88,018 sq.ft.	89	55	144	264	286	550	
	Internal Capture (10%) ⁶		-9	-5	-14	-26	-29	-55	
	Pass-by Trips (Shopping Center)		0	0	0	-81	-87	-168	
	TOTAL PRIMARY TRIPS			151	259	262	229	490	

Table 9 – Estimated Traffic Generation from Proposed Moco Development

Table 10 – Estimated Traffic Generation from Proposed Corseed Development

Phase	Land Use	Size	Al	M Peak Ho	ur	PM Peak Hour			
Filase	Land Ose	Size	IN	OUT	TOTAL	IN	OUT	TOTAL	
1	Single-Family Detached Housing ITE Land Use: 210	75 units	16	47	62	50	30	80	
2	Net Mixed Use	25% of Moco	22	22	44	69	69	138	
	Pass-by (Mixed Use)		0	0	0	20	22	42	
	TOTAL PRIMARY TRIPS		37	112	149	122	72	194	

In order to be conservative, no transportation modal split has been applied to the above-noted traffic generation calculation.

4.2 **Traffic Assignment**

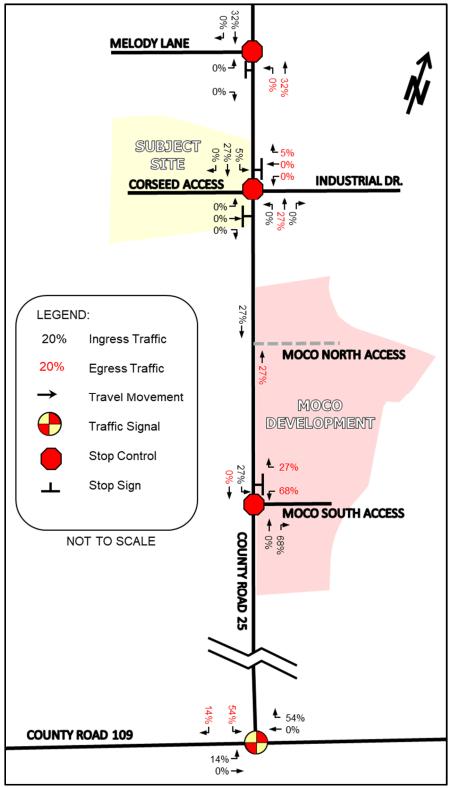
For the purposes of this study, it has been assumed that all traffic generated by the proposed development will be new traffic and would not be in the study area if the development was not constructed. The ITE data provides the anticipated percentage of new traffic entering and exiting during the peak hour. The ITE data provides the anticipated percentage of new traffic entering and exiting during the peak hour. Beyond the local area the distribution of traffic from the Moco Subdivision and Corseed Subdivision have been estimated based on the 2011 Transportation Tomorrow Survey [TTS] data (excerpt attached as **Appendix E**). TTS data provides historical origin and destination work trip percentages for specific areas within the County and the Greater Toronto and Hamilton Area [GTHA].

The egress distribution of the residential trips generated by the Moco Subdivision and Corseed Subdivision were based on TTS data for trips originating in Zone 8614 between 07:00 and 09:00. Logically, the distribution of ingress traffic will follow the inverse of the exiting traffic distribution. For each of the individual areas identified in the TTS data, we have selected the probable route of travel, assuming that people will select their route primarily based on travel time.

Commercial trips generated by the Moco and Corseed Subdivisions have been distributed proportionately with the existing traffic volumes on the roads in the study area.

For the Moco Subdivision, it is assumed that all residential trips will access the site via the Moco South Access and all commercial trips will access the site via the Moco North Access.

⁶ The internal capture rate (10%) was estimated based on a conservative application of the values provided in Table 7.1 and 7.2 of the ITE *Trip Generation Handbook*.



23

Appendix L – Proposed Traffic Distribution Figures

Figure A – Residential Traffic Distribution for the Proposed Moco Development (2021)

22%**→** 0% **→ MELODY LANE 4**.%0 0% ₹ INDUSTRIAL DR. 0% ♣ 5% → 5% ₹ 24%→ LEGEND: 20% Ingress Traffic **MOCO NORTH ACCESS** 20% Egress Traffic **Travel Movement** MOCO DEVELOPMENT Traffic Signal Stop Control **▲** 24% Stop Sign MOCO SOUTH ACCESS **COUNTY ROAD 25** 0% NOT TO SCALE **L** 54% **COUNTY ROAD 109** _{14%} ▲ 0%→

Figure B – Residential Traffic Distribution for the Proposed Moco Development (2026 & 2031)

32%**→ MELODY LANE** 0%♣ 0% ₹ SUBJECT SITE **←**0% **INDUSTRIAL DR. CORSEED ACCESS** LEGEND: 20% Ingress Traffic **MOCO NORTH ACCESS** 20% Egress Traffic **Travel Movement** MOCO DEVELOPMENT Traffic Signal Stop Control Stop Sign MOCO SOUTH ACCESS **COUNTY ROAD 25** 0% NOT TO SCALE **L** 54% **COUNTY ROAD 109** 14%-▲ 0%→

Figure C – Residential Traffic Distribution for the Proposed Corseed Development

19%) 39% **→** (0%) 0% **→ MELODY LANE** (0%) 0% ♣ (1%) 4% 🖜) 0% 4) 43% 4 6) 0% 7 SUBJECT **L** 0% (0%) **←**0% (0%) **▼**0% (0%) **INDUSTRIAL DR.** SITE CORSEED ACCESS (0%) 0% → (0%) 0% → (10%) 26% → (30%) 69%→ LEGEND: **L** 26% (54%) Ingress Traffic 20% AM (PM) **MOCO NORTH ACCESS** Egress Traffic 20% AM (PM) MOCO **Travel Movement** DEVELOPMENT (30%) 69%.**→** Traffic Signal **▲**7% (13%) Stop Control **-**67% (33%) Stop Sign **MOCO SOUTH ACCESS COUNTY ROAD 25** NOT TO SCALE (14%) 18% -(19%) 49% **▲** 17% (46%) - 0% (0%) **COUNTY ROAD 109** (24%) 15% -

(0%) 0%-

Figure D – Commercial Traffic Distribution for the Proposed Development Moco Development

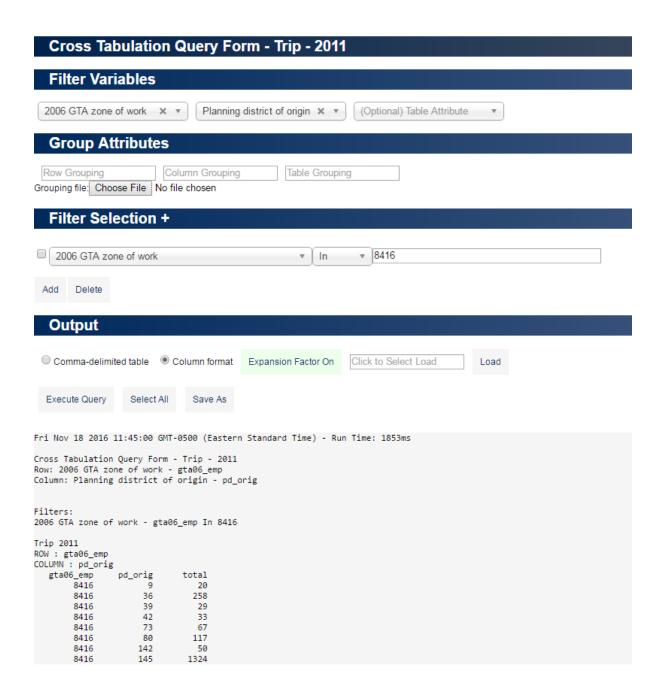
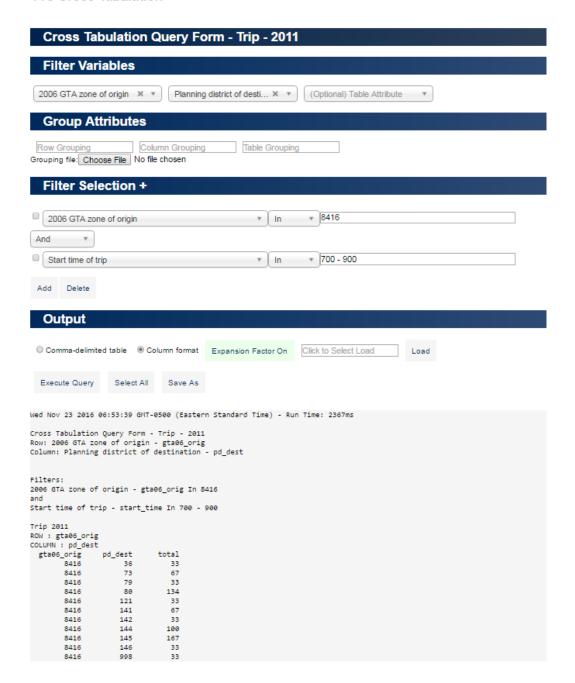

(27%) 55% → **MELODY LANE** (0%) 0% ♣ (3%) 13% ┰ (0%) 0% (0%) 0% (30%) 68% SUBJECT **L** 0% (0%) **−**5% (14%) 0% **↓ F**^{0%} (0%) **INDUSTRIAL DR.** CORSEED ACCESS (67%) 33% 🚣 (6%) 15% → (27%) 52% ¬ (27%) 52%→ LEGEND: **L** 0% (0%) Ingress Traffic 20% MOCO NORTH ACCESS AM (PM) - 0% Egress Traffic 20% AM (PM) MOCO **Travel Movement** DEVELOPMENT Traffic Signal %) 0%. 3) 67%. → **≜**0% (0%) Stop Control **√**0% (0%) Stop Sign MOCO SOUTH ACCESS **≜** 0% (0%) **←** 27% (56%) NOT TO SCALE **COUNTY ROAD 25** (14%) 18% 34% **▲** _{12% (32%)} **←**0% (0%) **COUNTY ROAD 109** (24%) 15% **4** (0%) 0% **->**

Figure E – Commercial Traffic Distribution for the Proposed Corseed Development


Appendix M – Transportation Tomorrow Survey Excerpt

TTS Cross Tabulation

